ABSTRACT
BACKGROUND: Multidrug-resistant tuberculosis (MDR-TB) is an increasing public health problem and poses a serious threat to global TB control. Fluoroquinolone (FQ) and aminoglycoside (AG) are essential anti-TB drugs for MDR-TB treatment. REBA MTB-FQ(R) and REBA MTB-KM(R) (M&D, Wonju, Korea) were evaluated for rapid detection of FQ and kanamycin (KM) resistance in MDR-TB clinical isolates. METHODS: M. tuberculosis (n=67) were isolated and cultured from the sputum samples of MDR-TB patients for extracting DNA of the bacilli. Mutations in genes, gyrA and rrs, that have been known to be associated with resistance to FQ and KM were analyzed using both REBA MTB-FQ(R) and REBA MTB-KM(R), respectively. The isolates were also utilized for a conventional phenotypic drug susceptibility test (DST) as the gold standard of FQ and KM resistance. The molecular and phenotypic DST results were compared. RESULTS: Sensitivity and specificity of REBA MTB-FQ(R) were 77 and 100%, respectively. Positive predictive value and negative predictive value of the assay were 100 and 95%, respectively, for FQ resistance. Sensitivity, specificity, positive predictive value and negative predictive value of REBA MTB-KM(R) for detecting KM resistance were 66%, 94%, 70%, and 95%, respectively. CONCLUSION: REBA MTB-FQ(R) and REBA MTB-KM(R) evaluated in this study showed excellent specificities as 100 and 94%, respectively. However, sensitivities of the assays were low. It is essential to increase sensitivity of the rapid drug resistance assays for appropriate MDR-TB treatment, suggesting further investigation to detect new or other mutation sites of the associated genes in M. tuberculosis is required.
Subject(s)
Humans , Chimera , DNA , Drug Resistance , Drug Resistance, Microbial , Fluoroquinolones , Kanamycin , Kanamycin Resistance , Mycobacterium , Mycobacterium tuberculosis , Public Health , Sputum , Tuberculosis , Tuberculosis, Multidrug-ResistantABSTRACT
BACKGROUND: Sputum decontamination with NALC-NaOH (N-acetyl-L-cysteine-sodium hydroxide) is known to better detect Mycobacterium tuberculosis (M. tb) by culture than that with using NaOH, which is widely used in Korean hospitals. In this report, sputum samples collected from pulmonary tuberculosis (TB) patients were treated with either NaOH or NALC-NaOH, and we compared the results of smear and culture positivity to determine whether the NALC-NaOH treatment method improves culture positivity in the sputum samples, and especially for those sputum samples that are smear negative and scanty. METHODS: For each decontamination method, 436 sputum samples from pulmonary TB patients in the National Masan Tuberculosis Hospital were collected for this study. Sputum from a patient was collected two times for the first and second day of sampling time, and these samples were employed for the decontamination process by performing the 4% NaOH and NALC-2% NaOH treatment methods, respectively, for detecting M. tb by an AFB (Acid Fast Bacilli) smear and also by culture in solid Ogawa medium. RESULTS: The NaOH and NALC-NaOH treatment methods did not significantly affect the AFB smear positivity of the sputum samples (33.0% vs 39.0%, respectively, p=0.078). However, the culture positive percents of M. tb in the Ogawa medium treated with NALC-NaOH and NaOH were 39.7% and 28.0%, respectively, which was a significantly different (p=0.0003). This difference in culture was more prominent in the sputum samples that were smear negative (the positive percents with NALC-NaOH and NaOH were 15.8% and 7.2%, respectively, p=0.0017) and scanty (NALC-NaOH and NaOH were 60.8% and 42.9%, respectively, p=0.036), but not for a smear that was 1+ or higher (p>0.05). CONCLUSION: NALC-NaOH treatment is better than NaOH treatment for the detection of M. tb by culture, but not by smear, and especially when the AFB smear is negative and scanty.