Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in Chinese | WPRIM | ID: wpr-929075

ABSTRACT

OBJECTIVE@#To prepare an injectable hydrogel/staple fiber composite loaded with combretastain A-4 disodium phosphate (CA4P) and doxorubicin (DOX) and evaluate its antitumor efficacy via intratumoral injection.@*METHODS@#DOX-loaded PELA staple fibers (FDOX) were prepared using electro-spinning and cryo-cutting, and the drug distribution on the surface of the fibers was observed using a fluorescence microscope, and the encapsulation efficiency and loading capacity of FDOX were determined with a fluorospectro photometer. The fibers were then dispersed in CA4P-loaded PLGA-PEG-PLGA tri-block polymer solution at room temperature to obtain the hydrogel/staple fiber composite (GCA4P/FDOX). The thermo-sensitivity of this composite was determined by a test tube inverting method. An ultraviolet spectrophotometer and a fluorospectrophotometer were used to detect the release profile of CA4P and DOX, respectively. We observed in vivo gel formation of the composite after subcutaneous injection in mice. The in vitro cytotoxicity of GCA4P/FDOX composite in MCF-7 and 4T1 cells was assessed using cell Counting Kit-8 (CCK-8) reagent. In a mouse model bearing breast tumor 4T1 cell xenograft, we evaluated the antitumor efficacy of the composite by monitoring tumor growth within 30 days after intratumoral injection of the composite. HE staining, immunohistochemistry for Ki67 and immunofluorescence (TUNEL) assay were used for pathological examination of the tumor tissues 21 days after the treatments.@*RESULTS@#The average length of FDOX was 4.0±1.3 μm, and its drug loading capacity was (2.69±0.35)% with an encapsulation efficiency of (89.70±0.12)%. DOX was well distributed on the surface of the fibers. When the temperature increased to 37 ℃, the composite rapidly solidified to form a gel in vitro. Drug release behavior test showed that CA4P was completely released from the composite in 5 days and 87% of DOX was released in 30 days. After subcutaneous injection, the composite solidified rapidly without degradation at 24 h after injection. After incubation with GCA4P/FDOX for 72 h, only 30.6% of MCF-7 cells and 28.9% of 4T1 cells were viable. In the tumor-bearing mice, the tumor volume was 771.9±76.9 mm3 in GCA4P/FDOX treatment group at 30 days. Pathological examination revealed obvious necrosis of the tumor tissues and tumor cell apoptosis induced by intratumoral injection of G4A4P/FDOX.@*CONCLUSION@#As an efficient dual drug delivery system, this hydrogel/staple fiber composite provides a new strategy for local combined chemotherapy of solid tumors.


Subject(s)
Animals , Female , Humans , Mice , Breast Neoplasms/drug therapy , Cell Line, Tumor , Delayed-Action Preparations/therapeutic use , Doxorubicin/therapeutic use , Heterografts , Hydrogels/therapeutic use , Mice, Inbred BALB C , Phosphates
2.
Article in Chinese | WPRIM | ID: wpr-932600

ABSTRACT

Objective:To achieve rapid and accurate detection of trace uranium in drinking water by analyzing the factors influencing the accuracy of uranium measurement in drinking water using ultraviolet fluorescence method and by evaluating the uncertainty in measurement.Methods:The influence of acidity, Fe 3+ and Mn 2+ contents on the analitical result were studied to optimize the measurement conditions. The accuracy of the measurement method was verified in 7 laboratories. By studying the errors introduced in the process of standard preparation, sample pretreatment and measurement, the sources of uncertainty were analyzed and the uncertainty was synthesized. Results:At pH 1-11 in aqueous solution, the linear regression coefficient of the standard curve was greater than 0.995, which was in line with the linear measurement range of the instrument. At pH 12 or so, the linear regression coefficient was 0.761, which could not meet the measurement requirements. At pH<3 or pH>10, the increase in fluorescence count was lower, which might increase the measurement error. At Fe 3+ concentration ≥15 mg/L, a large deviation occurred in measurement value that could affect seriously measurement result. At Mn 2+ concentration ≥ 1.6 mg/L, the sample produced white precipitation, which could affect the measurement accuracy. Three spiked water samples with different concentrations were determined in 8 laboratories. Each water sample was measured six times in parallel. The relative standard uncertainty of the result were 6.42×10 -2, 4.48×10 -2 and 5.26×10 -2 μg/L, and the expanded uncertainties were 0.03, 0.06 and 0.12 μg/L( k=2), respectively. Conclusions:The optimum conditions for the determination of uranium in water using this method pH were in samples 3-10, the concentration of Fe 3+ less than 15 mg/L, and the concentration of Mn 2+ less than or equal to 1.6 mg/L. The main sources of uncertainty in the measurement of uranium in water using ultraviolet fluorescence method arise from the repeated measurement error and the volume of added standard solution.

3.
Article in Chinese | WPRIM | ID: wpr-910420

ABSTRACT

Objective:To study the influence of source thickness and counting efficiency calibration on the measurement of gross alpha activity in water.Methods:241Am and natural uranium reference materials were spiked in drinking water to prepare source on a planchet with different thickness, for counting alpha activity on the planchet. Results:The effective thickness measured by spiking 241Am or uranium standard solution in water sample was consistent with the empirical value of 4 mg/cm 2. The alpha counting rate was in a linear increase trend from 2A-5A mg/cm 2 and was basically stable and no longer increase when thickness was higher than 10A mg/cm 2 (A was area of planchet). The result calculated by effective thickness method and thick source method were in good agreement when thickness was 10A mg/cm 2. Conclusions:In order to reduce the deviation of gross alpha counting rate caused by the source thickness and counting efficiency calibration, the source thickness is recommended to be 10A mg/cm 2.

SELECTION OF CITATIONS
SEARCH DETAIL