ABSTRACT
Background@#Poly-L-lactic acid (PLLA), a synthetic, biocompatible, and biodegradable polymer, has been safely used in several clinical applications. Recently, PLLA has been widely used in the field of dermatology to treat wrinkles in aging skin. Reportedly, PLLA directly acts on dermal fibroblasts causing a significant increase in the expression of type I collagen. However, little is known about the effect of PLLA on adipocytes. @*Objective@#This study aimed to analyze the effect of PLLA on adipocytes and examine its potential in treating deep wrinkles engendered by the loss of subcutaneous fat because of aging and photoaging. @*Methods@#To elucidate the effect of PLLA on skin photoaging, cultured 3T3-L1 adipocytes were irradiated with ultraviolet B (UVB) rays. Oil red O staining was used to detect lipid accumulation in the adipocytes. Real-time quantitative polymerase chain reaction and Western blotting were performed to detect types IV and VI collagen mRNA and protein levels, respectively, under different conditions. @*Results@#The differentiation of 3T3-L1 cells enhanced adipogenesis and the expression of types IV and VI collagens, both of which were inhibited by UVB irradiation. Following this irradiation, PLLA stimulated adipogenesis and the expression of types IV and VI collagens. @*Conclusion@#PLLA may provide the beneficial effect on adipocytes from the aspect of adipogenesis and collagen expression in the subcutaneous adipose tissues.
ABSTRACT
Renal fibrosis is considered to be the final common outcome of chronic kidney disease. Dipeptidyl peptidase-4 (DPP-4) inhibitors have demonstrated protective effects against diabetic kidney disease. However, the anti-fibrotic effect of evogliptin, a DPP-4 inhibitor, has not been studied. Here, we report the beneficial effects of evogliptin on unilateral ureteral obstruction (UUO)-induced renal fibrosis in mice. Evogliptin attenuated UUO-induced renal atrophy and tubulointerstitial fibrosis. Immunohistochemistry and Western blotting demonstrated that evogliptin treatment inhibits pro-fibrotic gene expressions and extracellular matrix production. In vitro findings showed that the beneficial effects of evogliptin on renal fibrosis are mediated by inhibition of the transforming growth factor-β/Smad3 signaling pathway. The present study demonstrates that evogliptin is protective against UUO-induced renal fibrosis, suggesting that its clinical applications could extend to the treatment of kidney disease of non-diabetic origin.
ABSTRACT
Background@#Aquaporin 1 (AQP1) is a transmembrane channel protein that allows rapid transposition of water and gases, in recent discoveries of AQP1 function involve cell proliferation, differentiation, wound healing, inflammation and infection in different cell types, suggesting that AQP1 plays key roles in diverse biologic process. Until now, less is known about the function of AQP1 on ultraviolet radiation induced photoaged skin. @*Objective@#In this study we set out to examine whether AQP1 expression may be influenced by repeated irradiation of ultraviolet B (UVB) in cultured dermal fibroblasts. @*Methods@#To elucidate the function of AQP1 in skin photoaging, human dermal fibroblasts (HS68) were irradiated by a series of 4 sub-cytotoxic doses of UVB which are known as UV-induced cell premature senescence model. Reverse transcription polymerase chain reaction and Western blotting were conducted to detect AQP1 expression from different groups. Then, cells were transfected with AQP1-targeting small interfering RNA. The activities of signaling proteins upon UVB irradiation were investigated to determine which pathways are involved in AQP1 expression. @*Results@#AQP1 expression was increased by 100 mJ/cm2 of UVB irradiation, but decreased by 200 mJ/cm2. Depletion of the AQP1 increased the apoptotic sensitivity of cells to UVB, as judged by upregulation of the p53, p21, poly (adenosine diphosphate [ADP]-ribose) polymerase and Bax together with the increased Bax/Bcl2 ratio. UVB induced downregulation of AQP1 was significantly attenuated by pretreatment with the MEK/ERK inhibitor (PD98059). @*Conclusion@#We concluded that AQP1 expression was down-regulated by repeated exposure of UVB via MEK/ERK activation pathways. The AQP1 reduction by UVB lead to changes of physiological functions in dermal fibroblasts, which might be associated with the occurrence and development of UVB induced photoaging.
ABSTRACT
BACKGROUND: The hypoglycemic drugs dipeptidyl peptidase-4 (DPP-4) inhibitors have proven protective effects on diabetic kidney disease, including renal fibrosis. Although NOD-like receptor protein 3 (NLRP3) inflammasome activation is known to play an important role in the progression of renal fibrosis, the impact of DPP-4 inhibition on NLRP3-mediated inflammation while ameliorating renal fibrosis has not been fully elucidated. Here, we report that the renoprotective effect of gemigliptin is associated with a reduction in NLRP3-mediated inflammation in a murine model of renal fibrosis.METHODS: We examined the effects of gemigliptin on renal tubulointerstitial fibrosis induced in mice by unilateral ureteral obstruction (UUO). Using immunohistochemical and Western blot analysis, we quantitated components of the NLRP3 inflammasome in kidneys with and without gemigliptin treatment, and in vitro in human kidney tubular epithelial human renal proximal tubule cells (HK-2) cells, we further analyzed the effect of gemigliptin on transforming growth factor-β (TGF-β)-stimulated production of profibrotic proteins.RESULTS: Immunohistological examination revealed that gemigliptin ameliorated UUO-induced tubular atrophy and renal fibrosis. Gemigliptin-treated kidneys showed a reduction in levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and interleukin-1β, which had all been markedly increased by UUO. In line with thein vivoresults, TGF-β markedly increased NLRP3 inflammasome markers, which were attenuated by gemigliptin treatment. Furthermore, gemigliptin treatment attenuated phosphorylated nuclear factor-κB levels, which had been increased in the UUO kidney as well as in TGF-β-treated cultured renal cells.CONCLUSION: The present study shows that activation of the NLRP3 inflammasome contributes to UUO-induced renal fibrosis and the renoprotective effect of gemigliptin is associated with attenuation of NLRP3 inflammasome activation.
Subject(s)
Animals , Humans , Mice , Atrophy , Blotting, Western , Diabetic Nephropathies , Dipeptidyl-Peptidase IV Inhibitors , Down-Regulation , Fibrosis , Hypoglycemic Agents , In Vitro Techniques , Inflammasomes , Inflammation , Kidney , Ureteral ObstructionABSTRACT
PURPOSE: The study aim was to compare nursing service satisfaction, hospital commitment and revisit intention between patients on general care units and comprehensive nursing care units. METHODS: Participants were 201 hospitalized patients in a WHO tertiary hospital and a general hospital. Data were analyzed using SPSS/WIN 23.0 program. RESULTS: There was a significant difference in the satisfaction with nursing service between patients on general care units and comprehensive nursing care units (t=14.73, p < .001). There was a significant difference in the hospital commitment between general care units and comprehensive nursing care units (t=7.52, p < .001). There was a significant difference in the revisit intention between patients on general care units and patients on comprehensive nursing care units (t=6.01, p < .001). There were significant relationships among nursing service satisfaction, hospital commitment and revisit intention. CONCLUSION: The findings reveal that patients on comprehensive nursing care units were more satisfied with the nursing service, hospital commitment, and revisit intention compared to general care unit patients. Nursing service satisfaction and hospital commitment were factors affecting hospital revisit intention. Therefore, these results are important data for complementing and expanding the comprehensive nursing service system to improve satisfied with nursing service and hospital commitment to increase hospital revisit intention.
Subject(s)
Humans , Complement System Proteins , Hospitals, General , Intention , Nursing Care , Nursing Service, Hospital , Nursing Services , Nursing , Patient Care , Tertiary Care CentersABSTRACT
BACKGROUND: Renal tubulointerstitial fibrosis is a common feature of the final stage of nearly all cause types of chronic kidney disease. Although classic peroxisome proliferator-activated receptor γ (PPARγ) agonists have a protective effect on diabetic nephropathy, much less is known about their direct effects in renal fibrosis. This study aimed to investigate possible beneficial effects of lobeglitazone, a novel PPARγ agonist, on renal fibrosis in mice. METHODS: We examined the effects of lobeglitazone on renal tubulointerstitial fibrosis in unilateral ureteral obstruction (UUO) induced renal fibrosis mice. We further defined the role of lobeglitazone on transforming growth factor (TGF)-signaling pathways in renal tubulointerstitial fibrosis through in vivo and in vitro study. RESULTS: Through hematoxylin/eosin and sirius red staining, we observed that lobeglitazone effectively attenuates UUO-induced renal atrophy and fibrosis. Immunohistochemical analysis in conjunction with quantitative reverse transcription polymerase chain reaction and Western blot analysis revealed that lobeglitazone treatment inhibited UUO-induced upregulation of renal Smad-3 phosphorylation, α-smooth muscle actin, plasminogen activator inhibitor 1, and type 1 collagen. In vitro experiments with rat mesangial cells and NRK-49F renal fibroblast cells suggested that the effects of lobeglitazone on UUO-induced renal fibrosis are mediated by inhibition of the TGF-β/Smad signaling pathway. CONCLUSION: The present study demonstrates that lobeglitazone has a protective effect on UUO-induced renal fibrosis, suggesting that its clinical applications could extend to the treatment of non-diabetic origin renal disease.
Subject(s)
Animals , Mice , Rats , Actins , Atrophy , Blotting, Western , Collagen Type I , Diabetic Nephropathies , Fibroblasts , Fibrosis , In Vitro Techniques , Mesangial Cells , Peroxisomes , Phosphorylation , Plasminogen Activator Inhibitor 1 , Polymerase Chain Reaction , Renal Insufficiency, Chronic , Reverse Transcription , Transforming Growth Factor beta , Transforming Growth Factors , Up-Regulation , Ureter , Ureteral ObstructionABSTRACT
Hepatic steatosis is common in obese individuals with hyperinsulinemia and is an important hepatic manifestation of metabolic syndrome. Sterol regulatory binding protein-1c (SREBP-1c) is a master regulator of lipogenic gene expression in the liver. Hyperinsulinemia induces transcription of SREBP-1c via activation of liver X receptor (LXR) and specificity protein 1 (Sp1). Cilostazol is an antiplatelet agent that prevents atherosclerosis and decreases serum triglyceride levels. However, little is known about the effects of cilostazol on hepatic lipogenesis. Here, we examined the role of cilostazol in the regulation of SREBP-1c transcription in the liver. The effects of cilostazol on the expression of SREBP-1c and its target genes in response to insulin or an LXR agonist (T0901317) were examined using real-time RT-PCR and western blot analysis on cultured hepatocytes. To investigate the effect of cilostazol on SREBP-1c at the transcriptional level, transient transfection reporter assays and electrophoretic mobility shift assays (EMSAs) were performed. Cilostazol inhibited insulin-induced and LXR-agonist-induced expression of SREBP-1c and its downstream targets, acetyl-CoA carboxylase and fatty acid synthase, in cultured hepatocytes. Cilostazol also inhibited activation of the SREBP-1c promoter by insulin, T0901317 and Sp1 in a luciferase reporter assay. EMSA analysis showed that cilostazol inhibits SREBP-1c expression by repressing the binding of LXR and Sp1 to the promoter region. These results indicate that cilostazol inhibits insulin-induced hepatic SREBP-1c expression via the inhibition of LXR and Sp1 activity and that cilostazol is a negative regulator of hepatic lipogenesis.
Subject(s)
Animals , Humans , Mice , Rats , Cells, Cultured , Hep G2 Cells , Hepatocytes/drug effects , Hydrocarbons, Fluorinated/pharmacology , Insulin/pharmacology , Lipogenesis , Mice, Inbred C57BL , Orphan Nuclear Receptors/agonists , Promoter Regions, Genetic , Protein Binding , Sp1 Transcription Factor/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sulfonamides/pharmacology , Tetrazoles/pharmacologyABSTRACT
Mushrooms collected from Deogyu mountain, Korea, in 2011, were identified as four classes, four orders, 13 families, 22 genera, and 33 species. In particular, agaricales was most abundant and comprised more than 70%. Their antioxidant activities were estimated using three different bioassay methods, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging assay, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, and reducing power assay. As a result, the methanol extracts of Stereum ostrea, Laetiporus sulphureus var. miniatus, and Tyromyces sambuceus exhibited potent antioxidant activity in all bioassays tested.
Subject(s)
Humans , Agaricales , Biological Assay , Biphenyl Compounds , Korea , Methanol , Ostrea , PicratesABSTRACT
One rare and interesting species collected from Gyeryong-san, Chungnam Province is described and illustrated in detail. The species "Tectella patellaris (Fr.) Murr." and genus "Tectella Earle" is a first record for Korean fungal flora. Specimens cited here have been deposited in the Herbarium Conservation Center of National Academy of Agricultural Sciences.
Subject(s)
KoreaABSTRACT
One rare and interesting species collected from Seorak-san, Inje-gun; Yeonyeop-san, Hongcheon-gun; Daeam-san, Yanggu-gun, Gangwon-do; Pocheon-gun, Gyeonggi-do; Songni-san, Boeun-gun; Joryeong-san, Goesan-gun, Chungcheongbuk-do and Sobaeksan, Yeongju-si, Gyeongsangbuk-do is described and illustrated in detail. The species "Protodaedalea hispida Imazeki" and genus "Protodaedalea Iamzeki" has not been previously recorded in Korean fungal flora. The specimens have been deposited in the Herbarium Conservation Center of the National Academy of Agricultural Sciences.