Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Article in Chinese | WPRIM | ID: wpr-774547

ABSTRACT

In order to increase the stability and solubility of essential oil in Jieyu Anshen Formula, this study was to prepare the essential oil into liposomes. In this experiment, the method for the determination of encapsulation efficiency of liposomes was established by ultraviolet spectrophotometer and dextran gel column. The encapsulation efficiency and particle size of liposomes were used as evaluation indexes for single factor investigation and Box-Behnken design-response surface method was used to optimize the design. Then the optimal formulation of volatile oil liposome was characterized using methyleugenol, elemin, β-asarone and α-asarone as index components. Finally, the in vitro transdermal properties of liposomes were studied by modified Franz diffusion cell. The results showed that the concentration of lecithin, the mass ratio of lecithin to volatile oil, and the stirring speed were the three most significant factors affecting the liposome preparation. The optimum formulation of volatile oil liposome was as follows: the concentration of lecithin was 7 g·L~(-1); mass ratio of lecithin to volatile oil was 5∶1; and the stirring speed was 330 r·min~(-1). Under such conditions, the prepared liposomes had blue emulsion light, good fluidity, half translucent, with particle size of(102.6±0.35) nm, Zeta potential of(-17.8±0.306) mV, permeability of(1.67±1.01)%, and stable property if liposome was stored at 4 ℃. 24 h after percutaneous administration, the cumulative osmotic capacity per unit time was(30.485 2±1.238 9),(34.794 8±0.928 3),(26.677 1±1.171 7),(3.066 2±0.175 3) μg·cm~(-2)respectively for methyleugenol, elemin, β-asarone and α-asarone. In vitro transdermal behaviors of methyleugenol, elemin, β-asarone and α-asarone in liposomes were all consistent with Higuchi equation. The prepared volatile oil liposomes met the relevant quality requirements, providing a reference for further research on preparation of multi-component Chinese medicine essential oil liposomes.


Subject(s)
Administration, Cutaneous , Drugs, Chinese Herbal , Liposomes , Oils, Volatile , Particle Size , Solubility
2.
Article in Chinese | WPRIM | ID: wpr-773681

ABSTRACT

To further investigate the metabolism of Tripterygium wilfordii and Paeonia lactiflora micro-emulsion gel in vivo,an LCMS/MS method was established for the determination of triptolide and paeoniflorin in T. wilfordii and P. lactiflora micro-emulsion gel.The extracorporeal recovery rate of blood probe was measured by concentration difference methods( incremental method and decremental method). Meanwhile,the skin and blood micro-dialysis methods of tripterine and paeoniflorin were established,and the pharmacokinetics of T. wilfordii microemulsion gel in skin and blood was studied by micro-dialysis combined with LC-MS/MS quantitative analysis. The results showed that the established method for the determination of triptolide and paeoniflorin in T. wilfordii microemulsion gel was well linear within the required range,and the specificity,recovery rate and degree of precision of the chromatography all conformed to the research requirements of micro-dialysis samples. The stability of freeze-thawing and the residual effect all conformed to the criteria of biological sample methodology. The probe recovery rates measured by incremental method and decremental method were almost consistent with the extracorporeal recovery rate test. The recovery rates of paeoniflorin in skin and blood micro-dialysis were( 30. 60±1. 09) % and( 28. 01± 1. 75) %,respectively. And the recovery rates of skin and blood micro-dialysis were( 26. 79 ± 2. 78) % and( 25. 39±1. 86) %,respectively. The intraday recovery rate of probes was stable within 11 h. The results of pharmacokinetic study showed that the Cmaxvalues of triptolide in skin and blood were( 148. 03±41. 51) and( 76. 77±15. 27) μg·L-1,respectively. And the Tmaxvalues were( 2. 33±0. 29) and( 3. 00± 0) h,respectively. The AUC0-11 hvalues were( 2 814. 05± 1 070. 37) and( 1 580. 63±208. 27) μg·h·L-1,respectively. The MRT0-11 hvalues were( 4. 20± 0. 33) and( 4. 54± 0. 34) h,respectively. The T1/2 values were( 4. 61±4. 11) and( 1. 07± 0. 13) h,respectively. The Cmaxvalues of paeoniflorin in skin and blood were( 991. 88 ± 152. 22) and( 407. 02±120. 06) μg·L-1,respectively. The Tmaxvalues were( 2. 00±0) h and( 2. 83±0. 29) h,respectively. The AUC0-11 hvalues were( 18 430. 27±3 289. 35) and( 6 338. 59 ± 1 659. 32) μg·h·L-1,respectively. The MRT0-11 hvalues were( 4. 29 ± 0. 16) and( 4. 00±0. 05) h,respectively. The T1/2 values were( 2. 16±0. 43) and( 1. 78±0. 48) h,respectively. The results suggested that micro-emulsion gel played a role in forming skin reservoir through percutaneous penetration. It not only could improve drug transdermal efficiency,but also control the sustained release of drug and form a long-term effect.


Subject(s)
Blood , Metabolism , Chromatography, Liquid , Drugs, Chinese Herbal , Pharmacokinetics , Emulsions , Gels , Humans , Paeonia , Chemistry , Skin , Metabolism , Tandem Mass Spectrometry , Tripterygium , Chemistry
3.
Article in Chinese | WPRIM | ID: wpr-773680

ABSTRACT

To detect the concentration of triptolide in skin and joint after percutaneous administration,an HPLC-MS/MS method and skin and joint micro-dialysis( MD) method of triptolide were established in this study. The separation was achieved on triple quadrupole( AB QTRAP4500) and phenomenex-C18( 4. 6 mm×150 mm,5 μm,luna) column with acetonitrile-water with 0. 1% formic acid( 65 ∶35) as the mobile phase at a flow rate of 0. 7 m L·min-1. An electrospray ionization( ESI) source was applied and operated in the positive multiple reaction monitoring( MRM) mode. The fragment ion for triptolide was m/z 361. 1→145. 0. The effects of different perfusion [Ringer's,PBS( p H 7. 4),30% ethanol saline]drug concentrations and flow rates on the recovery rate,as well as the relationship between the recovery rate and the loss rate were determined by incremental( dialysis) and reduction( retrodialysis) methods.The reduction method was applied in the in vivo study to investigate and determine the stability of the probe recovery rate in 10 h. The results of HPLC-MS/MS detection method conformed to the requirements of biological samples. The perfusion fluid was 30% ethanol saline. The recovery rate of skin and joint probes in vitro of triptolide increased within the flow rate of 0. 5-2. 5 μL·min-1. In order to increase the timeliness of data and the accuracy,the flow rate was determined to be 1 μL·min-1,and the sample interval was determined to be 0. 5 h. The recovery rate of triptolide in skin and joint probes in vitro and the loss rate were stable and equal despite of change of triptolide concentration within 10-200 μg·L-1. This indicated that the effect of drug concentration on the MD probe recovery rate was small,and the recovery rate could be replaced by the loss rate. The loss rate in vivo using MD method was measured at 10 h,indicating that the transfer rate of triptolide was stable within 10 h. The established method of triptolide in MD and HPLC-MS/MS can be applied to investigate the kinetic in skin and joint after percutaneous administration of triptolide.


Subject(s)
Chromatography, High Pressure Liquid , Diterpenes , Pharmacokinetics , Epoxy Compounds , Pharmacokinetics , Humans , Joints , Metabolism , Phenanthrenes , Pharmacokinetics , Reproducibility of Results , Skin , Metabolism , Tandem Mass Spectrometry
4.
Article in Chinese | WPRIM | ID: wpr-335850

ABSTRACT

The aim of this paper was to explore the effects of Frankincense and Myrrh essential oil on transdermal absorption, and investigate the mechanism of permeation on the microstructure and molecular structure of stratum corneum. Through the determination of stratum corneum/medium partition coefficient of ferulicacid in Chuanxiong influenced by Frankincense and Myrrh essential oil, the effects of volatile oil of frankincense and Myrrh on the the microscopic and molecular structure of stratum corneum were explored by observation of skin stratum corneum structure under scanning electron microscopy, and investigation of frankincense and myrrh essential oil effects on the molecular structure of keratin and lipids in stratum corneum under Fourier transform infrared spectroscopy. The results showed that the oil could enhance the distribution of ferulic acid in the stratum corneum and medium, and to a certain extent damaged the imbricate structure of stratum corneum which was originally regularly, neatly, and closely arranged; some epidermal scales turned upward, with local peeling phenomenon. In addition, frankincense and myrrh essential oil caused the relative displacement of CH2 stretching vibration peak of stratum corneum lipids and amide stretching vibration peak of stratum corneum keratin, indicating that frankincense and myrrh essential oil may change the conformation of lipid and keratin in the stratum corneum, increase the bilayer liquidity of the stratum corneum lipid, and change the orderly and compact structure to increase the skin permeability and reduce the effect of barrier function. It can be concluded that Frankincense and Myrrh essential oil can promote the permeation effect by increasing the distribution of drugs in the stratum corneum and changing the structure of the stratum corneum.

SELECTION OF CITATIONS
SEARCH DETAIL