Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 58: e18946, 2022. tab, graf
Article in English | LILACS | ID: biblio-1364411

ABSTRACT

Abstract To investigate structure-property relationship of polymer-based curcumin solid dispersion (SD), three acrylic polymers were used to formulate curcumin SD by solvent evaporation method. Curcumin Eudragit EPO SD (cur@EPO), curcumin Eudragit RS PO SD (cur@RSPO) and curcumin Eudragit RL PO SD (cur@RLPO) showed deep red, golden orange and reddish orange color, respectively. Cur@RSPO entrapped 15.42 wt% of curcumin followed by cur@RL PO and cur@EPO. FTIR spectra indicated that in cur@EPO, curcumin may transfer hydrogen to the dimethylaminoethyl methacrylate group and thus change its color to red. In contrast, curcumin may form hydrogen bonding with Eudragit RS PO and Eudragit RL. Curcumin exists in amorphous state in three SDs as proved by differential scanning calorimetry and X-Ray diffraction measurement. In vitro digestion presented that lower pH value in simulated gastric fluid (SGF) stimulates the curcumin release from cur@EPO while permeability influences the release profile in other two SDs. When in simulated intestinal fluid (SIF), first order release model governs the release behaviors of all three SDs which showed sustained release pattern. Our results are helpful to elucidate how structure of polymer may impact on the major properties of curcumin contained SD and will be promising to broaden its therapeutic applications.


Subject(s)
Polymers , Curcumin/analysis , Methods , Solvents/administration & dosage , X-Ray Diffraction/instrumentation , In Vitro Techniques/methods , Calorimetry, Differential Scanning/methods , Evaporation/classification , Spectroscopy, Fourier Transform Infrared , Color , Citrus sinensis/classification , Hydrogen-Ion Concentration
2.
Article in English | WPRIM | ID: wpr-311410

ABSTRACT

In the present study, we used a proteomics approach based on a two-dimensional electrophoresis (2-DE) reference map to investigate protein expression in the ovarian tissues of pubertal Swiss-Webster mice subjected to carbon ion radiation (CIR). Among the identified proteins, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is associated with the cell cycle[1] and that it influences proliferation in ovarian tissues. We analyzed the expression of UCH-L1 and the proliferation marker proliferation cell nuclear antigen (PCNA) following CIR using immunoblotting and immunofluorescence. The proteomics and biochemical results provide insight into the underlying mechanisms of CIR toxicity in ovarian tissues.


Subject(s)
Animals , Biomarkers , Carrier Proteins , Genetics , Metabolism , Electrophoresis, Gel, Two-Dimensional , Female , Gene Expression , Heavy Ion Radiotherapy , Mice , Ovary , Radiation Effects , Proteomics , Random Allocation , Ubiquitin Thiolesterase , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL