ABSTRACT
Objective: To establish and identify the HPLC-PDA fingerprint of Atractylodis Macrocephalae Rhizoma (AMR) and provide a reference for the comprehensive control of the quality of AMR. Methods: AMR was extracted with 70% methanol by sonicating for 60 min. The analysis of AMR extract was performed on Inertsil® ODS-SP column (150 mm × 4.6 mm, 5 μm), column temperature was maintained at 40 ℃, flow rate was 1.0 mL/min, and detector was Waters 2998 UV detector with detection wavelength 235 nm. Mobile phase was acetonitrile (B)-water (A) with the elution gradient 0 -10 min, 30%-45% B, 10-25 min, 45% B, 25-50 min, 45%-70% B, 50-55 min, 70% B, 55-62 min, 70%-30% B, 62-75 min, 30% B. Time-of-flight mass spectrometer (TOF/MS) and electro-spray ion (ESI) source were used for the qualitative analysis in a positive ion mode, and mass scan range was m/z 50-1 500. Results: Comparing and fitting the peaks of AMR from different habitats (Zhejiang, Anhui, and Hunan Provinces), the HPLC-PDA fingerprint was set up with six common peaks, and they were identified by UFLC-Q-TOF/MS as 5-(hydroxymethyl)-2-furaldehyde, atractylenolide III, atractylenolide I, atractylenolide II, atractylenolide VI, and biatractylenolide. System suitability, extraction, and chromatographic conditions of AMR were optimized. RSD of accuracy, stability and repeatability was all less than 2%. Measuring ten batches and fitting fingerprint similarity, the values were all greater than 0.95. Conclusion: The HPLC fingerprint can be used as standard uniformity and stability of quality control methods for AMR slice.