Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 449
Filter
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 395-400, 2024.
Article in Chinese | WPRIM | ID: wpr-1016573

ABSTRACT

@#After years of development, the advantages of computer-assisted orthognathic surgery have been widely recognized. However, the clinical application of this technology is challenging. Each step may generate errors from data acquisition, computer-assisted diagnosis, and computer-assisted surgical design, causing errors to be transferred from the virtual surgical plan to the operation. The accumulation and amplification of errors will affect the final surgical effect. Currently, digital devices, such as intraoral scanners, are being explored for error control, utilizing automation methods and algorithms, and implementing personalized bone positioning methods. Moreover, there are still many problems that have not been fully resolved, such as precise simulation of postoperative soft tissue, functional assessment of mandibular movement, and absorbable internal fixation materials. Fully understanding computer-assisted orthognathic surgery's limitations could provide direction for optimizing existing methods while helping clinicians avoid risks and maximize its advantages to achieve the best outcome. Many emerging and cutting-edge technologies, such as personalized titanium plates, artificial intelligence, and surgical robots, will further promote the development of this discipline. We can expect future optimization of digital orthognathic surgical technology by innovations in automation, intelligence, and personalization.

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 280-286, 2024.
Article in Chinese | WPRIM | ID: wpr-1013089

ABSTRACT

Objective@#Based on 3D printing technology, explore the precision of a perforator vessel location guide plate for fibular musculocutaneous flaps before the transplantation of fibular osteocutaneous flaps and evaluate its application effects.@*Methods@#This study was reviewed and approved by the ethics committee, and informed consent was obtained from the patients. From May 2019 to October 2022, 14 patients with jaw defects who needed to undergo fibular perforator flap transplantation at the First Affiliated Hospital of Xinjiang Medical University were selected. For the seven patients in the guide plate group, CTA was combined with Mimics software to reconstruct both lower limbs, and the perforator vessel positioning guide for locating perforator vessels was designed; the two ends of the guide plate were designed as fixed ends, with the upper end fixed to the knee joint and the lower end fixed to the ankle joint, and the guide plate was fabricated by a 3D printer. For the seven patients in the control group, a conventional handheld Doppler probe was used for perforator vessel location. The average operation time, bleeding volume, recovery time, deviation of perforator vessel location, postoperative flap-related complications, postoperative donor site shape satisfaction, and lower extremity functional scale (LEFS) score were recorded. SPSS 25.0 software was used for statistical analysis.@*Results@#The average operation time, bleeding volume, recovery time, deviation of perforator vessel location and postoperative donor site shape satisfaction were significantly better in the guide plate group than in the control group (P<0.05); moreover, the differences in postoperative flap-related complications and LEFS scores were not statistically significant (P>0.05).@*Conclusion@#Based on 3D printing technology, fibular musculocutaneous flap perforator vessels can be more accurately located using a guide plate and the knee and ankle as fixed points, and this method can effectively stabilize the guide position, prevent soft tissue offset, and improve positioning accuracy and thus deserves to be generalized.

3.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 249-256, 2024.
Article in Chinese | WPRIM | ID: wpr-1013085

ABSTRACT

Objective@#To evaluate the bone repair effect of 3D-printed magnesium (Mg)-loaded polycaprolactone (PCL) scaffolds in a rat skull defect model.@*Methods@#PCL scaffolds mixed with Mg microparticles were prepared by using 3D printing technology, as were pure PCL scaffolds. The surface morphologies of the two scaffolds were observed by scanning electron microscopy (SEM), and the surface elemental composition was analyzed via energy dispersive spectroscopy (EDS). The physical properties of the scaffolds were characterized through contact angle measurements and an electronic universal testing machine. This study has been reviewed and approved by the Ethics Committee. A critical size defect model was established in the skull of 15 Sprague-Dawley (SD) rats, which were divided into the PCL group, PCL-Mg group, and untreated group, with 5 rats in each group. Micro-CT scanning was performed to detect and analyze skull defect healing at 4 and 8 weeks after surgery, and samples from the skull defect area and major organs of the rats were obtained for histological staining at 8 weeks after surgery.@*Results@#The scaffolds had a pore size of (480 ± 25) μm, a fiber diameter of (300 ± 25) μm, and a porosity of approximately 66%. The PCL-Mg scaffolds contained 1.0 At% Mg, indicating successful incorporation of Mg microparticles. The contact angle of the PCL-Mg scaffolds was 68.97° ± 1.39°, indicating improved wettability compared to that of pure PCL scaffolds. Additionally, compared with that of pure PCL scaffolds, the compressive modulus of the PCL-Mg scaffolds was (57.37 ± 8.33) MPa, demonstrating enhanced strength. The PCL-Mg group exhibited the best bone formation behavior in the skull defect area compared with the control group and PCL group at 4 and 8 weeks after surgery. Moreover, quantitative parameters, such as bone volume (BV), bone volume/total volume (BV/TV), bone surface (BS), bone surface/total volume (BS/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and bone mineral density (BMD), of skull defects were better than those in the other groups, indicating the best bone regeneration effect. H&E, Goldner, and VG staining revealed more mineralized new bone formation in the PCL-Mg group than in the other groups, and H&E staining of the major organs revealed good biosafety of the material.@*Conclusion@#PCL-Mg scaffolds can promote the repair of bone defects and have clinical potential as a new scaffold material for the repair of maxillofacial bone defects.

4.
China Journal of Orthopaedics and Traumatology ; (12): 7-14, 2024.
Article in Chinese | WPRIM | ID: wpr-1009216

ABSTRACT

OBJECTIVE@#To investigate the clinical effect of unilateral percutaneous vertebroplasty (PVP) combined with 3D printing technology for the treatment of thoracolumbar osteoporotic compression fracture.@*METHODS@#A total of 77 patients with thoracolumbar osteoporotic compression fractures from October 2020 to April 2022 were included in the study, all of which were vertebral body compression fractures caused by trauma. According to different treatment methods, they were divided into experimental group and control group. Thirty-two patients used 3D printing technology to improve unilateral transpedicle puncture vertebroplasty in the experimental group, there were 5 males and 27 females, aged from 63 to 91 years old with an average of (77.59±8.75) years old. Forty-five patients were treated with traditional bilateral pedicle puncture vertebroplasty, including 7 males and 38 females, aged from 60 to 88 years old with an average of(74.89±7.37) years old. Operation time, intraoperative C-arm X-ray times, anesthetic dosage, bone cement injection amount, bone cement diffusion good and good rate, complications, vertebral height, kyphotic angle (Cobb angle), visual analogue scale(VAS), Oswestry disability index (ODI) and other indicators were recorded before and after surgery, and statistically analyzed.@*RESULTS@#All patients were followed up for 6 to 23 months, with preoperative imaging studies, confirmed for thoracolumbar osteoporosis compression fractures, two groups of patients with postoperative complications, no special two groups of patients' age, gender, body mass index (BMI), time were injured, the injured vertebral distribution had no statistical difference(P>0.05), comparable data. Two groups of patients with bone cement injection, bone cement dispersion rate, preoperative and postoperative vertebral body height, protruding after spine angle(Cobb angle), VAS, ODI had no statistical difference(P>0.05). The operative time, intraoperative fluoroscopy times and anesthetic dosage were statistically different between the two groups(P<0.05). Compared with the traditional bilateral puncture group, the modified unilateral puncture group combined with 3D printing technology had shorter operation time, fewer intraoperative fluoroscopy times and less anesthetic dosage. The height of anterior vertebral edge, kyphosis angle (Cobb angle), VAS score and ODI of the affected vertebrae were statistically different between two groups at each time point after surgery(P<0.05).@*CONCLUSION@#In the treatment of thoracolumbar osteoporotic compression fractures, 3D printing technology is used to improve unilateral puncture PVP, which is convenient and simple, less trauma, short operation time, fewer fluoroscopy times, satisfactory distribution of bone cement, vertebral height recovery and kyphotic Angle correction, and good functional improvement.


Subject(s)
Male , Female , Humans , Middle Aged , Aged , Aged, 80 and over , Fractures, Compression/surgery , Spinal Fractures/surgery , Bone Cements , Treatment Outcome , Vertebroplasty/methods , Kyphosis/surgery , Punctures , Printing, Three-Dimensional , Technology , Osteoporotic Fractures/surgery , Anesthetics , Retrospective Studies , Kyphoplasty/methods
5.
Odovtos (En línea) ; 25(3): 82-98, Sep.-Dec. 2023. tab, graf
Article in English | LILACS, SaludCR | ID: biblio-1529071

ABSTRACT

Abstract To evaluate the microtensile bond strength (µTBS) of two resin cements to 3D printed and milled CAD/CAM resins used for provisional fixed partial dentures. Blocks (5 x 5 x 5 mm) of three 3D-printed resins (Cosmos3DTemp / Yller; Resilab3D Temp / Wilcos and SmartPrint BioTemp, / MMTech) were printed (Photon, Anycubic Technology Co.). A milled material (VitaCAD-Temp, VITA) was used as control. Half the specimens were sandblasted and the rest were untreated. Two blocks were bonded with the corresponding resin cement: PanaviaV5 (Kuraray Noritake) and RelyX Ultimate (3M Oral Care). After 24 hours, the bonded blocks were sectioned into 1 x 1 mm side sticks. Half the beams were tested for µTBS and the other half was thermocycled (5000 cycles, 30s dwell-time, 5s transfer time) before µTBS testing. A four way Generalized Linear Model (material*sandblasting*cement*aging) analysis was applied. VITA exhibited the lowest µTBS, regardless of the cement, sandblasting and thermocycling. Sandblasting significantly improved the µTBS of VIT, especially after aging, but did not improve the µTBS of 3D printed resins. Sandblasting was not beneficial for 3D printed resins, although is crucial for adhesive cementation of milled temporary resins. Airborne particle abrasion affects the integrity of 3D-printed resins, without producing a benefit on the microtensile bond strength of these materials. However, sandblasting is crucial to achieve a high bond strength on milled temporary resins.


Resumen Evaluar la resistencia adhesiva en microtracción (µTBS) de dos cementos resinosos a resinas CAD/CAM impresas y fresadas indicadas para restauraciones provisionales. Bloques (5 x 5 x 5mm) de tres resinas impresas (Cosmos3DTemp / Yller; Resilab3D Temp / Wilcos and SmartPrint BioTemp, / MMTech) y una resina fresada (VitaCAD-Temp, VITA) fueron fabricados. La mitad de los especímenes fueron arenados y el resto no recibió tratamiento mecánico. Dos bloques con condiciones de tratamiento iguales fueron cementados con cemento resinoso (PanaviaV5 / Kuraray Noritake y RelyX Ultimate / 3M Oral Care). Después de 24 horas los bloques fueron seccionados en palitos de 1 mm² de área. En la mitad de los especímenes se midió la TBS inmediatamente y el resto fue termociclado (5000 ciclos, 30s remojo, 5s transferencia) antes de la prueba de TBS. Se aplica un análisis estadístico por Modelo Linear General con 4 factores (material*arenado*cemento*termociclado). La resina VITA presentó la menor µTBS, independientemente del cemento usado, el arenado y el termociclado. Sin embargo, el arenado aumentó la µTBS de VIT, especialmente después del termociclado. Por otro lado, el arenado no resultó en un aumento significativo de la µTBS de las resinas impresas. El arenado no fue beneficiosos para las resinas impresas, aunque es un paso crucial para la cementación adhesive de las resinas fresadas. El arenado afecta la integridad de las capas de las resinas impresas, sin generar un beneficio en la TBS.


Subject(s)
Computer-Aided Design/instrumentation , Resin Cements/therapeutic use , Dental Cementum , Printing, Three-Dimensional/instrumentation
6.
Rev. Estomat ; 31(2): 1-8, 20230929.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1511309

ABSTRACT

Antecedentes: El conocimiento anatómico de la cámara pulpar y del sistema de conductos radiculareses fundamental para el correcto diagnóstico y planificación del tratamiento en endodoncia. Las herramientas pedagógicasdirigidasa los estudiantes de odontologíacomo apoyo en los procesos formativosde la asignatura de endodoncia favorecen la apropiación del conocimiento e identificación de las variantes morfológicas del sistema de conductos radiculares, que permiten al estudiantela integración del conocimiento. Objetivo:Identificar mediante una revisión de la literatura las estrategias pedagógicas que se utilizan para la enseñanza de morfología del sistema de conductos radiculares en endodoncia. Materiales y métodos: Se realizó una búsqueda bibliográfica de estudios originales en las bases de datos Medline (Pubmed), SciELO, Lilacs, Medline (Ovid), Web of science, Scopus, Embase, Google académico, eligiendo estudios publicadosa partir del año 2010 al 2022, para la selección de los artículos definitivos se seleccionaron estudios concernientes a procesos pedagógicos en endodoncia, excluyendo así otros tipos de enfoques en el área de odontología. Resultados: Se identificaron un total de 63 referencias, los cuales fueron analizados y seleccionados16, siendo excluidos 47 por no cumplir los criterios de inclusión. Conclusión: El uso de herramientas pedagógicas virtuales, didácticas y tecnológicas propician un efecto positivo en el estudiante de pregrado de odontología durante el aprendizaje de anatomía de sistemas de conductos radiculares que aumentan la confianza y seguridad al momento de realizar un tratamiento endodóntico en pacientes


Background: Anatomical knowledge of the pulp chamber and the root canal system is essential for correct diagnosis and treatment planning in endodontics. The pedagogical tools aimed at dental students as support in the training processes of the endodontics subject favor the appropriation of knowledge and identification of the morphological variants of the root canal system, which allow the student the integration of knowledge. Objective: To identify, through a review of the literature, the pedagogical strategies used to teach morphology of the root canal system in endodontics. Materials and methods: A bibliographic search of original studies was carried out in the Medline (Pubmed), SciELO, Lilacs, Medline (Ovid), Web of Science, Scopus, Embase, and Google academic databases, choosing studies published from 2010 to 2022. , for the selection of the definitive articles, studies concerning pedagogical processes in endodontics were selected, thus excluding other types of approaches in the area of dentistry. Results: A total of 63 references were identified, 16 of which were analyzed and selected, 47 being excluded for not meeting the inclusion criteria. Conclusion: The use of virtual, didactic and technological pedagogical tools favor a positive effect on the dentistry undergraduate student while learning the anatomy of root canal systems that increase confidence and security when performing endodontic treatment in patients.

7.
Odovtos (En línea) ; 25(2)ago. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1448737

ABSTRACT

The objective is to determine which biopolymer has the best 3D printing characteristics and mechanical properties for the manufacture of a bioscaffold, using the fused deposition printing technique, with models generated from an STL file obtained from a Micro-CT scan taken from a bovine iliac crest bone structure. Through an experimental exploratory study, three study groups of the analyzed biopolymers were carried out with thirteen printed structures of each one. The first is made of 100% PLA. The second, 90B, we added 1g of diatom extract, and the third, 88C, differs from the previous one in that it also contains 1g of calcium phosphate. The 39 printed structures underwent a visual inspection test, which required the fabrication of a gold standard scaffold in resin, with greater detail and similarity to the scanned bone structure. Finally, the structures were subjected to a compressive force (N) to obtain the modulus of elasticity (MPa) and compressive strength (MPa) of each one of them. A statistically significant difference (p=0.001) was obtained in the printing properties of the biomaterial 88C, compared to 90B and pure PLA and the 88C presented the best 3D printing characteristics. In addition, it also presented the best mechanical properties compared to the other groups of materials. Although the difference between these was not statistically significant (p=0.388), in the structures of the 88C biomaterial, values of compressive strength (8,84692 MPa) and modulus of elasticity (43,23615 MPa) were similar to those of cancellous bone in the jaws could be observed. Because of this result, the 88C biomaterial has the potential to be used in the manufacture of bioscaffolds in tissue engineering.


El objetivo es determinar cuál biopolímero presenta las mejores características de impresión 3D y propiedades mecánicas para la fabricación de un bioandamiaje, utilizando la técnica de impresión por deposición fundida, con modelos generados a partir de un archivo en formato STL que se obtuvo de un Micro-CT Scan de una estructura osea de cresta iliaca bovina. Mediante un estudio exploratorio, se realizaron 3 grupos de estudio con trece estructuras impresas de cada uno. El primero, se compone 100% de PLA. El segundo, 90B, se le agrega 1g de extracto de diatomea, y el tercero, 88C, se diferencia del anterior ya que contiene además, 1g de fosfato de calcio. A las 39 estructuras impresas se les realizó una prueba de inspección visual, por lo que se requirió la confección de un patrón de oro en resina, con mayor detalle y similitud a la estructura ósea escaneada. Finalmente, las estructuras fueron sometidas a una fuerza compresiva (N) para la obtención del módulo de elasticidad (MPa) y de la resistencia compresiva (MPa) de cada una de ellas. Se obtuvo una diferencia estadísticamente significativa (p=0,001) en las propiedades de impresión del biomaterial 88C, con respecto al 90B y al PLA puro, presentando las mejores características de impresión 3D. Además, obtuvo las mejores propiedades mecánicas en comparación con los otros grupos de materiales. Aunque la diferencia entre estos no fue estadísticamente significativa (p=0,388), en las estructuras del biomaterial 88C, se pudieron observar valores de resistencia compresiva (8,84692 MPa) y módulo de elasticidad (43,23615 MPa) que son semejantes a los del hueso esponjoso de los maxilares. A razón de este resultado, el biomaterial 88C cuenta con el potencial para ser utilizado en la fabricación de bioandamiajes en la ingeniería tisular.

8.
Int. j. morphol ; 41(3): 690-698, jun. 2023. ilus, tab, graf
Article in Spanish | LILACS | ID: biblio-1514320

ABSTRACT

El uso de nuevos recursos tecnológicos en la enseñanza de anatomía ha impulsado la necesidad de adaptar el modelo educativo haciéndolo más centrado en el estudiante, dinámico y participativo mediante herramientas digitales y 3D; orientando los conocimientos hacia su aplicación clínica, pero bajo un ajuste curricular que tiende a cursar menos horas presenciales en aula o laboratorio. Este trabajo describe la experiencia local de una nueva Escuela de Medicina en Chile, reportada el año 2018, además y otros trabajos de centros formadores presentados en el "SECTRA Users Meeting 2019 Estocolmo", Karolinska Institutet, Suecia. Este trabajo describe los reportes orales sobre la aplicación de nuevos recursos digitales como; la mesa de disección digital táctil SECTRA® y modelos anatómicos cadavéricos impresos en 3D Erler-Zimmer®, bases de datos sobre anatomía digital, además, su impacto en el desempeño académico, reportado por usuarios de diferentes países, tales como: Australia, Canadá, Chile, China, Colombia, Estados Unidos de Norteamérica (EUA) y Suecia. Los datos fueron recopilados y analizados a partir de la información reportada en las presentaciones orales y resúmenes entregados por los expositores. La gran mayoría de los países expositores declararon el uso combinado de recursos digitales y 3D sumados a los tradicionales para la enseñanza de anatomía. Sólo el representante de EUA declaró usar exclusivamente recursos digitales (en laboratorio y en línea), experiencia correspondiente a una joven e innovadora escuela de medicina. La mayoría de los centros docentes declaró utilizar la mesa de disección digital en una amplia proporción de sus contenidos curriculares, en asociación a plataformas tipo RIS/PACS como IDS7 portal de SECTRA o las utilizadas por el centro formador. El uso de nuevas tecnologías digitales y 3D ha ganado un importante espacio en el currículum de la enseñanza de anatomía, complementando el uso de los recursos tradicionales.


SUMMARY: The use of new technological resources in the teaching of anatomy has promoted the need to adapt the educational model, making it more student-centered, dynamic, and participatory through digital and 3D tools, directing the knowledge towards its clinical application, but under a curricular adjustment that tends to take fewer contact hours in the classroom or laboratory. This work describes the local experience of a new School of Medicine in Chile, reported in 2018, and other work from training centers presented at the "SECTRA Users Meeting 2019 Stockholm", Karolinska Institutet, Sweden. This work describes the oral reports on the application of new digital resources such as; the SECTRA® digital tactile dissection table and Erler- Zimmer® 3D printed cadaveric anatomical models, databases on digital anatomy, in addition, its impact on academic performance, reported by users from different countries, such as Australia, Canada, Chile, China, Colombia, United States of America (USA) and Sweden. The data was collected and analyzed from the information reported in the oral presentations and summaries delivered by the speakers.The vast majority of the exhibiting countries declared the combined use of digital and 3D resources added to the traditional ones for teaching anatomy. Only the representative from the USA stated that they exclusively used digital resources (in the laboratory and online), an experience corresponding to a young and innovative medical school. Most of the educational centers stated that they used the digital dissection table in a large proportion of their curricular contents, in association with RIS/PACS-type platforms such as the IDS7 SECTRA portal or those used by the training center. The use of new digital and 3D technologies has gained an important space in the anatomy teaching curriculum, complementing the use of traditional resources.


Subject(s)
Humans , Universities , Health Education/trends , Educational Technology , Printing, Three-Dimensional , Anatomy/education
9.
Article | IMSEAR | ID: sea-222444

ABSTRACT

This case report describes three cases in which periapical surgeries were carried out using a new surgical endodontic technique by using a three?dimensional (3D) printed template for guided osteotomy and root resection. In Case 1, the data obtained from preoperative CT scan and cast scan were transferred to a surgical planning software. The surgical template was printed using a 3D printer. Using the template, osteotomy and root?end resection were precisely carried out. In Case 2, after CBCT imaging, data were transferred to stereolithography and a 3D model was fabricated. With the help of the 3D model, a template was fabricated using tray material. This guided surgical template minimized the extent of osteotomy and enabled precise targeting of the apex. In Case 3, a preoperative CT scan aided in the fabrication of a surgical 3D template. The template assisted in the precise removal of the overlying cortical bone.

10.
Int. j. morphol ; 41(1): 73-78, feb. 2023. ilus
Article in English | LILACS | ID: biblio-1430533

ABSTRACT

SUMMARY: The study on cadavers, although considered fundamental in the teaching of human anatomy, is limited in several universities, mainly due to the acquisition and manipulation of cadaveric material. Throughout history, several artificial anatomical models have been used to complement the real anatomical pieces. The present study offers a new alternative: the making of three-dimensional models from Computed Tomography (3D-CT) patient image acquisition. CT images from the USP University Hospital database were used. Patients underwent examinations for reasons other than the present study and were anonymized to maintain confidentiality. The CT slices obtained in thin cross-sections (approximately 1.0 mm thick) were converted into three-dimensional images by a technique named Volume Rendering for visualization of soft tissue and bone. The reconstructions were then converted to an STL (Standard Triangle Language) model and printed through two printers (LONGER LK4 Pro® and Sethi S3®), using PLA and ABS filaments. The 3D impressions of the thigh and leg muscles obtained better visual quality, being able to readily identify the local musculature. The images of the face, heart, and head bones, although easily identifiable, although seemed to present lower quality aesthetic results. This pilot study may be one of the first to perform 3D impressions of images from CT to visualize the musculature in Brazil and may become an additional tool for teaching.


El estudio en cadáveres, a pesar de considerarse un aspecto fundamental en la enseñanza de la anatomía humana, se encuentra limitado en varias universidades, principalmente por la adquisición y manipulación de material cadavérico. A lo largo de la historia se han utilizado varios modelos anatómicos artificiales para complementar las piezas anatómicas reales. El presente estudio ofrece una nueva alternativa: la elaboración de modelos tridimensionales a partir de la adquisición de imágenes de pacientes por Tomografía Computarizada (3D-CT). Se utilizaron imágenes de TC de la base de datos del Hospital Universitario de la USP. Los pacientes se sometieron a exámenes por razones distintas al presente estudio y fueron anonimizados para mantener la confidencialidad. Los cortes de TC obtenidos en secciones transversales delgadas (aproximadamente 1,0 mm de grosor) se convirtieron en imágenes tridimensionales mediante una técnica denominada Volume Rendering para la visualización de tejido blando y hueso. Luego, las reconstrucciones se convirtieron a un modelo STL (Standard Triangle Language) y se imprimieron a través de dos impresoras (LONGER LK4 Pro® y Sethi S3®), utilizando filamentos PLA y ABS. Se obtuvo una mejor calidad visual de las impresiones 3D de los músculos del muslo y la pierna, pudiendo identificar fácilmente la musculatura local. Las imágenes de la cara, el corazón y los huesos de la cabeza, aunque fácilmente identificables, parecían presentar resultados estéticos de menor calidad. Este estudio piloto puede ser uno de los primeros en realizar impresiones 3D de imágenes de TC para visualizar la musculatura y podría ser en una herramienta adicional para la enseñanza.


Subject(s)
Humans , Tomography, X-Ray Computed , Printing, Three-Dimensional , Anatomy/education , Models, Anatomic
11.
Acta Pharmaceutica Sinica ; (12): 3108-3115, 2023.
Article in Chinese | WPRIM | ID: wpr-999048

ABSTRACT

Based on the dual needs of analgesia and anti-inflammation in trauma treatment, this study uses acetaminophen and moxifloxacin hydrochloride as active pharmaceutical ingredients and develops a composite bilayer tablet with a dual-phase drug release system by using binder jet 3D printing technology. Due to the complexity of the 3D printing process, there is an interaction between the various parameters. Through the optimization of the process, the relationship between the key process parameters can be determined more intuitively. In this study, the process of extended-release tablets was optimized to maintain the mechanical properties of the tablets while realizing the regulation of release. The full-factor experimental design of three central points 23 was used to analyze the factors that significantly affect the quality attributes of extended-release tablets and the interaction between factors. The optimal extended-release process parameters were obtained by the response optimizer: the inkjet quantity of the printing ink was 10 (about 13.8 pL), the powder thickness was 180 μm, and the running speed was 360 mm·s-1. The in vitro of release of 3D printed composite bilayer tablets showed that the in vitro of release of 3D printed tablets and commercially available tablets conformed to the Ritger-Peppas release model. The results of porosity showed that the immediate-release layer of the preparation has many pores and large pore size, and the dissolution of the immediate release layer within 15 min was greater than 85%. The internal pore size of the extended release layer is large, but it can still release slowly for up to 8 h, the mechanism may be related to the extended release of HPMC gelation. On the basis of verifying the rationality of the design goal of 3D printed composite bilayer tablets, this study also provides a theoretical basis for the preparation of 3D printing complex preparations.

12.
Acta Pharmaceutica Sinica ; (12): 2811-2817, 2023.
Article in Chinese | WPRIM | ID: wpr-999024

ABSTRACT

With the growing demand of personalized medicine for children, it is especially important to develop medicines for children. In this study, using metoprolol tartrate as model drug, we developed 3D printed chewable tablets suitable for children with automated dosage distribution using semi-solid extruded (SSE) 3D printing technology. Based on the quality by design concept, this study prepared a semi-solid material with good printability using gelatin as the substrate, constructed 3D models and printed tablets with the aid of computer-aided design. The printing parameters were optimized and determined as follows: print temperature of 35-37 ℃, print speed of 25 mm·s-1, fill rate of 15%, and number of outer profile layers of 2. Subsequently, the printing process and the quality uniformity of the tablets were verified, and a linear relationship between the dose and the number of model layers was obtained. Finally, 3D printed chewable tablets were superior in terms of appearance, dose accuracy and compliance compared with traditional split-dose commercially available tablets. In this study, 3D printed metoprolol tartrate chewable tablets with good performance were successfully prepared to address the personalized medication needs of pediatric patients.

13.
Acta Pharmaceutica Sinica ; (12): 2640-2655, 2023.
Article in Chinese | WPRIM | ID: wpr-999022

ABSTRACT

3D printing is an additive manufacturing technology with the help of digital control. Since FDA approved the first 3D printing drug in 2015, its research enthusiasm in the pharmaceutical field has been increasing year by year. In printing technology, fused deposition molding (FDM) and semi-solid extrusion (SSE) are the two most widely used extrusion molding technologies. In this review, recent advances of pharmaceutical 3D printing extrusion molding technology are reviewed from six aspects: mechanism, equipment, pharmaceutical excipients, applications, design and industrialization prospects of extrusion molding technology.

14.
Journal of Medical Biomechanics ; (6): E276-E282, 2023.
Article in Chinese | WPRIM | ID: wpr-987947

ABSTRACT

Objective Aiming at the problem of significant anisotropy in the three-dimensional ( 3D) printed polyether-ether-ketone ( PEEK) bone substitutes manufactured by material extrusion technology, taking the femur, the main load-bearing long bone of the lower limb, as an example, the biomechanical properties of the femoral model under different direction in the build chamber were evaluated by the combination of finite element analysis and in-vitro mechanical experiment. Methods A left femoral model was obtained by reconstruction from CT data. The stress and displacement of the 3D printed PEEK femur with different directions in the build chamber under five physiological postures in the human gait cycle were simulated by varying the orthogonal anisotropy mechanical properties. An in-vitro mechanical experiment was conducted to investigate the safety and stability of the femur through a 3D printed PEEK femur. Results When the long axis of the femur model was perpendicular to the building platform of the 3D printer, a better mechanical property was obtained, and the maximum von Mises stress was 46. 56 MPa, which was lower than the yield stress of PEEK, while the maximum displacement was larger than that of the natural femur under same loading condition. Therefore, the 3D printed PEEK femur met the strength requirement, but the stability needs to be improved. Conclusions The long axis is recommended to be perpendicular to the building platform when the material extrusion technology was used for the substitute of the load-bearing long bone, and the effect of its anisotropy on service performance of the substitute should be carefully considered when the 3D printing technology is used for load-bearing bone substitute.

15.
Journal of Medical Biomechanics ; (6): E135-E141, 2023.
Article in Chinese | WPRIM | ID: wpr-987926

ABSTRACT

Objective To investigate the effect of different coating methods on production quality of complex and flexible silicone vascular replicas. Methods Based on models of anterior communicating artery aneurysms, several patient-specific models were made by using spray-coating method and brush-spin-coating method respectively, and two methods for making the same vascular structure were quantitatively compared in terms of thickness growth, circumferential uniformity and light transmittance. Results Brush-spin-coating method was better than spray-coating method in the thickness control and coating uniformity for fabrication of vessels with large curvature, variable diameter and straight tube, and the model had preferably light transmittance and surface smoothness. The relative deviation of thickness by brush-spin-coating method was decreased by 8. 9% , 10. 8% and 16. 9% respectively compared with spray-coating method. Conclusions At present stage, the brush-spin coating method has the advantage of thickness uniformity and light transmittance over the spray-coating method in making silicone phantoms, and it has promising application prospects in fluid mechanics field of in vitro experiment on large vessels.

16.
Journal of China Pharmaceutical University ; (6): 410-420, 2023.
Article in Chinese | WPRIM | ID: wpr-987660

ABSTRACT

@#Most drugs taste bitter and irritating, resulting in poor compliance of patients, and the bad odor affects the therapeutic effect. The successful research and development of a drug should not only conform to the five quality characteristics of effectiveness, stability, safety, uniformity and economy, but also the compliance of patients to drugs with bad odor. The development of taste masking techniques is critical for bitter drugs.This review describes the principles, advantages and drawbacks of traditional taste masking techniques, and introduces the mechanism and application of novel taste masking techniques, such as melt granulation, hot melt extrusion, 3D printing, drug complex preparation, and bitter taste inhibitors. The in vitro evaluation methods of drug taste masking effect, such as functional magnetic resonance imaging, in vitro dissolution, and electronic tongue technology, are described. And introduce in vivo evaluation methods, such as animal and human taste, in the field of taste masking effect. A new strategy of BP neural network prediction model for drug taste evaluation is proposed, with a view to providing theoretical reference for the future research on drug taste masking.

17.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 801-806, 2023.
Article in Chinese | WPRIM | ID: wpr-987082

ABSTRACT

Objective@#To evaluate the clinical efficacy of positioning guide templates for maxillary wholly impacted supernumerary teeth to provide technological solutions for clinical applications. @*Methods @#After approval by the hospital ethics committee and informed consent given by the patients. Data from 136 patients with maxillary wholly impacted supernumerary teeth from January 2016 to April 2022 were analyzed retrospectively. The patients were divided into two groups according to the usage of the positioning guide template. The experimental group included patients using the positioning guide template (71 cases), and the control group did not use the positioning guide template (65 cases). The operation time and complications were statistically analyzed to evaluate the clinical efficacy after surgery. @*Results @# All operations were successfully completed. The average operation time in the experimental group was (21.5 ± 3.4) min, significantly shorter than that in the control group (27.2 ± 4.9) min. There were statistically significant differences between the experimental and control groups (t = 7.599, P<0.001). One week after the operation, there were no complications in the experimental group, and there were 2 cases of adjacent tooth injury and 3 cases of gingival numbness in the control group.@* Conclusion @# A digital positioning guide template can effectively shorten the time of maxillary wholly impacted supernumerary teeth extraction and is an effective means to assist clinical maxillary wholly impacted supernumerary teeth extraction.

18.
Journal of Southern Medical University ; (12): 783-792, 2023.
Article in Chinese | WPRIM | ID: wpr-986989

ABSTRACT

OBJECTIVE@#To prepare customized porous silicone orbital implants using embedded 3D printing and assess the effect of surface modification on the properties of the implants.@*METHODS@#The transparency, fluidity and rheological properties of the supporting media were tested to determine the optimal printing parameters of silicone. The morphological changes of silicone after modification were analyzed by scanning electron microscopy, and the hydrophilicity and hydrophobicity of silicone surface were evaluated by measuring the water contact angle. The compression modulus of porous silicone was measured using compression test. Porcine aortic endothelial cells (PAOECs) were co-cultured with porous silicone scaffolds for 1, 3 and 5 days to test the biocompatibility of silicone. The local inflammatory response to subcutaneous porous silicone implants was evaluated in rats.@*RESULTS@#The optimal printing parameters of silicone orbital implants were determined as the following: supporting medium 4% (mass ratio), printing pressure 1.0 bar and printing speed 6 mm/s. Scanning electron microscopy showed that the silicone surface was successfully modified with polydopamine and collagen, which significantly improved hydrophilicity of the silicone surface (P < 0.05) without causing significant changes in the compression modulus (P > 0.05). The modified porous silicone scaffold had no obvious cytotoxicity and obviously promoted adhesion and proliferation of PAOECs (P < 0.05). In rats bearing the subcutaneous implants, no obvious inflammation was observed in the local tissue.@*CONCLUSION@#Poprous silicone orbital implants with uniform pores can be prepared using embedded 3D printing technology, and surface modification obviously improves hydrophilicity and biocompatibility of the silicone implants for potential clinical application.


Subject(s)
Animals , Rats , Swine , Silicon , Orbital Implants , Endothelial Cells , Porosity , Silicones , Printing, Three-Dimensional
19.
Chinese Journal of Medical Instrumentation ; (6): 651-658, 2023.
Article in Chinese | WPRIM | ID: wpr-1010256

ABSTRACT

3D printing technology has great advantages in small batch and personalized customization, so it has attracted much attention in the biomedical field. The consumables available for 3D printing include polymer, metal, ceramic and derived materials. Biomedical ceramics, with high melting point and poor toughness, are the most difficult materials to be used in 3D printing. The progress of 3D printing ceramic preparation process using ceramic powder, ceramic slurry, ceramic wire, ceramic film and other different raw materials as consumables are reviewed, and the surface roughness, size, density and other parameters of ceramics prepared by SLS, 3DP, DIW, IJP, SL, DLP, FDM, LOM and other different processes are compared. The study also summarizes the clinical application status of 3D printed bioceramics in the field of hard tissue repair such as bone tissue engineering scaffolds and dental prostheses. The SL ceramic additive manufacturing technology based on the principle of UV polymerization has better manufacturing precision, forming quality and the ability to prepare large-size parts, and can also endow bioceramics with better biological properties, mechanical properties, antibacterial, tumor treatment and other functions by doping trace nutrients and surface functional modification. Compared with the traditional subtractive manufacturing process, the bioceramics prepared by 3D printing not only have good mechanical properties, but also often have better biocompatibility and osteoconductivity.


Subject(s)
Bone and Bones , Ceramics , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
20.
Chinese Journal of Medical Instrumentation ; (6): 557-561, 2023.
Article in Chinese | WPRIM | ID: wpr-1010238

ABSTRACT

With the highlighted advantages of 3D printing technology in the field of dental prosthodontics, there is increasing in the numbers of registration applications for additive manufacturing customized dentures. However, there is still a lack of unified analysis in the core elements of process control, the key points of registration and the safety production quality control. Based on the current research status of the industry, the study is intended to clarify confusion and difficulties, deeply analyse the mechanism of the product defects, sort the core elements of process control, then try to establish a systematic evaluation system from product performance research, key process verification, production quality control and the description of registration files, so that it can provide help for practitioners to clarify research direction, establishing quality management system, improving the efficiency of registration and ensuring product quality.

SELECTION OF CITATIONS
SEARCH DETAIL