Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Protein & Cell ; (12): 258-280, 2022.
Article in English | WPRIM | ID: wpr-929157

ABSTRACT

The eukaryotic genome is folded into higher-order conformation accompanied with constrained dynamics for coordinated genome functions. However, the molecular machinery underlying these hierarchically organized three-dimensional (3D) chromatin architecture and dynamics remains poorly understood. Here by combining imaging and sequencing, we studied the role of lamin B1 in chromatin architecture and dynamics. We found that lamin B1 depletion leads to detachment of lamina-associated domains (LADs) from the nuclear periphery accompanied with global chromatin redistribution and decompaction. Consequently, the inter-chromosomal as well as inter-compartment interactions are increased, but the structure of topologically associating domains (TADs) is not affected. Using live-cell genomic loci tracking, we further proved that depletion of lamin B1 leads to increased chromatin dynamics, owing to chromatin decompaction and redistribution toward nucleoplasm. Taken together, our data suggest that lamin B1 and chromatin interactions at the nuclear periphery promote LAD maintenance, chromatin compaction, genomic compartmentalization into chromosome territories and A/B compartments and confine chromatin dynamics, supporting their crucial roles in chromatin higher-order structure and chromatin dynamics.


Subject(s)
Humans , Chromatin , Chromosomes , Genome , Lamin Type B/genetics
2.
Acta Pharmaceutica Sinica B ; (6): 3150-3164, 2021.
Article in English | WPRIM | ID: wpr-922785

ABSTRACT

The three-dimensional (3D) conformation of chromatin is integral to the precise regulation of gene expression. The 3D genome and genomic variations in non-alcoholic fatty liver disease (NAFLD) are largely unknown, despite their key roles in cellular function and physiological processes. High-throughput chromosome conformation capture (Hi-C), Nanopore sequencing, and RNA-sequencing (RNA-seq) assays were performed on the liver of normal and NAFLD mice. A high-resolution 3D chromatin interaction map was generated to examine different 3D genome hierarchies including A/B compartments, topologically associated domains (TADs), and chromatin loops by Hi-C, and whole genome sequencing identifying structural variations (SVs) and copy number variations (CNVs) by Nanopore sequencing. We identified variations in thousands of regions across the genome with respect to 3D chromatin organization and genomic rearrangements, between normal and NAFLD mice, and revealed gene dysregulation frequently accompanied by these variations. Candidate target genes were identified in NAFLD, impacted by genetic rearrangements and spatial organization disruption. Our data provide a high-resolution 3D genome interaction resource for NAFLD investigations, revealed the relationship among genetic rearrangements, spatial organization disruption, and gene regulation, and identified candidate genes associated with these variations implicated in the pathogenesis of NAFLD. The newly findings offer insights into novel mechanisms of NAFLD pathogenesis and can provide a new conceptual framework for NAFLD therapy.

3.
Chinese Journal of Biotechnology ; (12): 331-341, 2021.
Article in Chinese | WPRIM | ID: wpr-878566

ABSTRACT

Genetic and epigenetic alterations accumulate in the process of hepatocellular carcinogenesis, but the role of genomic spatial organization in HCC is still unknown. Here, we performed in situ Hi-C in HCC cell line PLC/PRF/5 compared with normal liver cell line L02, together with RNA-seq and ChIP-seq of SMC3/CTCF/H3K27ac. The results indicate that there were significant compartment switching, TAD shifting and loop pattern altering in PLC/PRF/5. These spatial changes are correlated with abnormal gene expression and more opening promoter regions of the HCC cell line. Thus, the 3D genome organization alterations in PLC/PRF/5 are important in epigenetic mechanisms of HCC tumorigenesis.


Subject(s)
Humans , Carcinoma, Hepatocellular/genetics , Cell Line , Cell Line, Tumor , Genomics , Liver Neoplasms/genetics
4.
J Biosci ; 2020 Jan; : 1-15
Article | IMSEAR | ID: sea-214348

ABSTRACT

The mammalian genome is complex and presents a dynamic structural organization that reflects function.Organization of the genome inside the mammalian nucleus impacts all nuclear processes including but notlimited to transcription, replication and repair, and in many biological contexts such as early development,differentiation and physiological adaptations. However, there is limited understating of how 3D organization ofthe mammalian genome regulates different nuclear processes. Recent advances in microscopy and a myriad ofgenomics methods—propelled by next-generation sequencing—have advanced our knowledge of genomeorganization to a great extent. In this review, we discuss nuclear compartments in general and recent advancesin the understanding of how mammalian genome is organized in these compartments with an emphasis ondynamics at the nuclear periphery

SELECTION OF CITATIONS
SEARCH DETAIL