Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 135-141, 2014.
Article in English | WPRIM | ID: wpr-727684

ABSTRACT

The downregulation of A-type K+ channels (IA channels) accompanying enhanced somatic excitability can mediate epileptogenic conditions in mammalian central nervous system. As IA channels are dominantly targeted by dendritic and postsynaptic processings during synaptic plasticity, it is presumable that they may act as cellular linkers between synaptic responses and somatic processings under various excitable conditions. In the present study, we electrophysiologically tested if the downregulation of somatic IA channels was sensitive to synaptic activities in young hippocampal neurons. In primarily cultured hippocampal neurons (DIV 6~9), the peak of IA recorded by a whole-cell patch was significantly reduced by high KCl or exogenous glutamate treatment to enhance synaptic activities. However, the pretreatment of MK801 to block synaptic NMDA receptors abolished the glutamate-induced reduction of the IA peak, indicating the necessity of synaptic activation for the reduction of somatic IA. This was again confirmed by glycine treatment, showing a significant reduction of the somatic IA peak. Additionally, the gating property of IA channels was also sensitive to the activation of synaptic NMDA receptors, showing the hyperpolarizing shift in inactivation kinetics. These results suggest that synaptic LTP possibly potentiates somatic excitability via downregulating IA channels in expression and gating kinetics. The consequential changes of somatic excitability following the activity-dependent modulation of synaptic responses may be a series of processings for neuronal functions to determine outputs in memory mechanisms or pathogenic conditions.


Subject(s)
Animals , Rats , Central Nervous System , Dizocilpine Maleate , Down-Regulation , Glutamic Acid , Glycine , Kinetics , Long-Term Potentiation , Memory , N-Methylaspartate , Neurons , Plastics , Receptors, N-Methyl-D-Aspartate
2.
Korean Journal of Anesthesiology ; : 402-409, 2003.
Article in Korean | WPRIM | ID: wpr-60284

ABSTRACT

BACKGROUND: Fluoxetine (Prozac), a selective serotonin reuptake inhibitor, has been shown to be effective in the treatment of depression. We investigated the effects of norfluoxetine, the major active metabolite of fluoxetine, on voltage-gated K+ currents in primary cultured hippocampal neurons, and determined the potency and modes of actions of norfluoxetine. METHODS: Voltage-gated K+ currents were studied in primary cultured rat hippocampal neurons using the whole-cell configuration of the patch-clamp technique. Electrophysiological recordings were done in hippocampal neurons between 5-10 days in culture. Transient A-type K+ currents (KA) and delayed-rectifier K+ (KDR) currents were isolated from whole-cell K+ currents using a pulse protocol. RESULTS: Norfluoxetine accelerated the decay rate of whole-cell K+ currents, and thus decreased the current amplitude at the end of a pulse in a concentration-dependent manner. Norfluoxetine inhibited KA and KDR currents in a concentration-dependent manner with IC50's of 0.93 and 0.70micro M, respectively. Norfluoxetine also reduced the areas of KA currents and the steady-state KDR current over the range of test potentials, and the reduction was voltage-dependent (greater increase at more positive potentials). From the onset of the fractional block of KA currents by norfluoxetine during the initial 40 ms of a clamp step, we calculated k1 = 53.26/micro M.s for the association rate constant, and k2 = 70.24/s for the dissociation rate constant. The resulting apparent KD was 1.32micro M, which is similar to the IC50 value obtained from the concentration-response curve. CONCLUSIONS: Our results indicate that norfluoxetine, the major metabolite of fluoxetine, at therapeutic levels, produces a concentration- and voltage-dependent inhibition of KA and KDR currents in primary cultured hippocampal neurons. These effects could perturb the neuronal excitability in the hippocampus, and may contribute to the therapeutic antidepressant action of fluoxetine.


Subject(s)
Animals , Rats , Depression , Fluoxetine , Hippocampus , Inhibitory Concentration 50 , Neurons , Patch-Clamp Techniques , Potassium Channels, Voltage-Gated , Serotonin
SELECTION OF CITATIONS
SEARCH DETAIL