Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Acta Pharmaceutica Sinica B ; (6): 600-620, 2022.
Article in English | WPRIM | ID: wpr-929273

ABSTRACT

The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.

2.
China Pharmacist ; (12): 201-204, 2018.
Article in Chinese | WPRIM | ID: wpr-705489

ABSTRACT

Objective:To investigate the protective effect of salidroside on acute lung injury or acute respiratory distress syndrome (ALI/ARDS) in rats. Methods:A total of 50 rats were randomly divided into five groups:the normal control group,the model group, salidroside high,medium and low (8.0,4.0,2.0 mg·kg-1) dose groups with 10 ones in each. ALI/ARDS model was prepared by tail vein injection of oleic acid (0.1 ml·kg-1). The administration route was intraperitoneal injection, once daily for continuous 3 days. At 24 h after the model preparation was successful,1.0 ml blood samples were collected through carotid artery for the blood gas analysis. The lung wet/dry weight ratio,arterial oxygen partial pressure and HE staining lung tissue pathology were detected and the expression of HMGB1 and KRT-14 in the blood of rats was detected after the drug was administered for 3 days. Results:The expres-sion of HMGB1 and KRT-14 in each salidroside was lower than that in the model group,and the differences were statistically significant between the medium and high dose groups and the model group(P<0.05). The dose and efficacy of salidroside were positively corre-lated,and the differences were statistically significant between the medium and high dose groups and the low dose group(P<0.05). The oxygen partial pressure of each salidroside group was higher than that of the model group, and the lung wet/dry weight ratio was lower than that of the model group,and the difference was statistically significant between the medium and high dose groups and the model group(P<0.05). The dose and efficacy of salidroside were positively correlated,and the difference was statistically significant between the medium and high dose groups and the low dose group(P<0.05). Compared with the model group,the lung pathological changes of each salidroside group were improved. Conclusion:Salidroside can reduce the expression of inflammatory factors HMGB1 and KRT-14 in blood,reduce pulmonary edema and increase oxygen partial pressure in ALI/ARDS rats, which shows obvious thera-peutic effect on ALI/ARDS.

3.
São Paulo; s.n; s.n; 2017. 105 p. graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-1361420

ABSTRACT

Infecções por Plasmodium sp. podem levar a um quadro respiratório grave, com complicações pulmonares denominadas lesão pulmonar aguda e síndrome do desconforto respiratório agudo (LPA/SDRA). Inflamação aguda, lesão do endotélio alveolar e do parênquima pulmonar, disfunção e aumento da permeabilidade da barreira alvéolo-capilar e, consequente, formação de edema, caracterizam esta síndrome. O modelo experimental, que utiliza o parasita murino Plasmodium berghei ANKA e camundongos da linhagem DBA/2, é empregado no estudo de mediadores imunológicos e fatores que propiciam o estabelecimento das lesões pulmonares associados à LPA/SDRA. Diversos estímulos podem atuar diretamente no aumento da permeabilidade endotelial por meio da desestabilização dos microtúbulos, rearranjo dos microfilamentos de actina e contração das células endoteliais, via sinalização de Rho-GTPases, causando disfunção da barreira endotelial. Desta forma, este trabalho tem como objetivo avaliar as alterações do citoesqueleto em células endoteliais primárias pulmonares de camundongos DBA/2 (CEPP-DBA/2), as vias de sinalização das principais Rho-GTPases e o estresse oxidativo, causados pela presença de eritrócitos parasitados com esquizontes de P. berghei ANKA (EP-PbA). As CEPP-DBA/2 foram estimuladas com TNF, VEGF ou IFNγ, em diferentes tempos de exposição, seguido da incubação com EP-PbA. Assim, foram realizados ensaios de imunofluorescência para análise do rearranjo de microfilamentos de actina e da desestabilização de microtúbulos. As vias de sinalização das Rho-GTPases foram avaliadas por Western blot, para as expressões proteicas de RhoA, Cdc42 e MLC. Além disso, ensaio fluorométrico foi realizado para detectar a produção de espécies reativas de oxigênio, resultantes do estímulo com eritrócitos parasitados. CEPP-DBA/2 estimuladas por EP-PbA, VEGF, TNF ou IFNγ, em associação ou não, apresentaram alterações morfológicas nos microfilamentos de actina e aumento dos espaços interendoteliais. Imagens de imunofluorescência também mostram desestabilização de microtúbulos e desfosforilação de FAK, causadas por EP-PbA. Os ensaios de permeabilidade validam que os eritrócitos parasitados com formas maduras de P. berghei induziram aumento da permeabilidade microvascular nas CEPP-DBA/2. Além disso, estas células, estimuladas com EP-PbA, demonstraram elevada produção de espécies reativas de oxigênio (EROs), o que pode estar contribuindo com o desenvolvimento de estresse oxidativo e com a injúria endotelial, assim como, com o aumento da permeabilidade vascular. O mais interessante é que estas alterações endoteliais podem estar relacionadas ao aumento da razão RhoA/Cdc42, da expressão proteica de MLC fosforilada e do sinal de ativação de RhoA. Em conjunto, estes resultados mostram envolvimento dos eritrócitos parasitados com esquizontes de Plasmodium berghei ANKA na desorganização do citoesqueleto e na disfunção da barreira alvéolo-capilar, via RhoA/Rho-kinase, o que pode estar contribuindo com a patogênese da LPA/SDRA associada à malária


Infections by Plasmodium sp. can lead to a serious respiratory condition with pulmonary complications, named acute lung injury and acute respiratory distress syndrome (ALI/ARDS). Acute inflammation, alveolar endothelium and lung parenchyma injuries, dysfunction and increased permeability of the pulmonary alveolar-capillary barrier and consequent formation of edema characterize this syndrome. Several stimuli can directly increase endothelial permeability through actin microfilaments rearrangement, via Rho- GTPases signaling, leading to endothelial barrier dysfunction. DBA/2 mice infected with Plasmodium berghei ANKA develop ALI/ARDS similar to that observed in humans. The purpose of this research was to assess cytoskeletal changes in DBA/2 mice primary microvascular lung endothelial cells (PMLEC), verify the signaling pathways of the Rho- GTPases and analyze the oxidative stress on these cells in the presence of P. berghei ANKA-infected red blood cells (PbA-iRBC). PMLEC were stimulated by TNF, VEGF or IFNγ followed by incubation with PbA-iRBC. Immunofluorescence assays were performed to analyze actin microfilaments rearrangement and microtubules destabilization. Western blot for RhoA, Cdc42 and MLC proteins were conducted to assess alterations in signaling pathways of Rho-GTPases. In addition, a fluorimetric assay was performed to detect the production of reactive oxygen species resulting from PbA-iRBC stimulus. P. berghei ANKA, VEGF, TNF and IFNγ stimuli, in association or not, caused morphological disturbances in actin microfilaments of PMLEC and an increase of intercellular spaces. Moreover, immunofluorescence images showed microtubules destabilization and FAK dephosphorylation in these cells, caused by PbA-iRBC. The permeability assay showed that PbA-iRBC induced an increase of microvascular permeability in PMLEC. In addition, PMLEC stimulated by PbA-iRBC, showed elevated production of ROS, which may be contributing to oxidative stress and increasing the damage of endothelial cells, as well as an increase of vascular permeability. Interestingly, these endothelial changes may be related to the increased RhoA/Cdc42 protein expressions ratio, augmented protein expression of phosphorylated MLC and RhoA activation signal. Taken together, these data demonstrate the involvement of P. berghei ANKA-infected red blood cells in cytoskeleton disorganization and alveolar-capillary barrier dysfunction, through of RhoA / Rho-kinase signaling pathway, which may contribute to ALI/ARDS pathogenesis


Subject(s)
Animals , Male , Female , Mice , Cytoskeleton/classification , Endothelial Cells , Malaria/pathology , Plasmodium berghei/classification , Capillary Permeability/immunology , Blood-Air Barrier
4.
The Korean Journal of Critical Care Medicine ; : 59-63, 2009.
Article in English | WPRIM | ID: wpr-645018

ABSTRACT

BACKGROUND: ASV is a closed-loop ventilation system that guarantees a user-set minimum per-minute volume in intubated patients, whether paralyzed or with spontaneous breathing. Here, we tested the effects of ASV onrespiratory mechanics and compared them with volume-controlled ventilation (VCV). METHODS: Thirteen patients meeting the criteria for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) were enrolled. All patients were paralyzed to eliminate spontaneous breathing. We started with VCV (VCV1), then used ASV followed by VCV modes (VCV2), maintaining minute volume as much as that of VCV1. RESULTS: During ASV, compared with VCV1, the inspiratory and expiratory tidal volumes and expiratory resistance increased. Conversely, the total respiratory rate and maximum pressure decreased. No changes in the arterial blood gases, heart rate, or mean systemic pressure were noted during the trial. CONCLUSIONS: In ALI/ARDS patients, although no differences were observed in the arterial blood gas analysis between the two modes, ASV provided better respiratory mechanics in terms of peak airway pressure and tidal volume than VCV.


Subject(s)
Humans , Acute Lung Injury , Blood Gas Analysis , Gases , Heart Rate , Lung , Mechanics , Respiration , Respiratory Mechanics , Respiratory Rate , Tidal Volume , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL