Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Gac. méd. Méx ; 155(5): 504-510, Sep.-Oct. 2019. graf
Article in English | LILACS | ID: biblio-1286551

ABSTRACT

Cancer is a multifactorial disease that constitutes a serious public health problem worldwide. Prostate cancer advanced stages are associated with the development of androgen-independent tumors and an apoptosis-resistant phenotype that progresses to metastasis. By studying androgen-independent lymphoid nodule carcinoma of the prostate (LNCaP) cells induced to apoptosis by serum elimination, we identified the activation of a non-selective cationic channel of 23pS conductance that promotes incoming Ca2+ currents, as well as apoptosis final stages. arp2cDNA was isolated and identified to be of the same cell type, and mRNA was expressed in Xenopus laevis oocytes, which was found to be associated with the activation of incoming Ca2+ currents and induction to apoptosis. cDNA, which encodes the ARP2 protein, was overexpressed in LNCaP cells and Chinese hamster ovary cells, which induced apoptosis. Our evidence suggests that protein ARP2 overexpression and transit to the cell membrane allows an increased Ca2+ incoming current that initiates the apoptosis process in epithelial-type cells whose phenotype shows resistance to programmed cell death.


Subject(s)
Humans , Animals , Male , Prostatic Neoplasms/pathology , Calcium/metabolism , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Ovum/metabolism , Prostatic Neoplasms/metabolism , Xenopus laevis , RNA, Messenger/metabolism , Calcium Channels/metabolism , Cricetulus , CHO Cells , DNA, Complementary/isolation & purification , Apoptosis Regulatory Proteins/isolation & purification
2.
Virologica Sinica ; (6): 139-147, 2014.
Article in Chinese | WPRIM | ID: wpr-451982

ABSTRACT

As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for manipulating the actin cytoskeleton for efifcacious infection. An ongoing chorus of research now indicates that the actin cytoskeleton is critical for viral replication at many stages of the viral life cycle, including binding, entry, nuclear localization, genomic transcription and reverse transcription, assembly, and egress/dissemination. Speciifcally, viruses subvert the force-generating and macromolecular scaffolding properties of the actin cytoskeleton to propel viral surifng, internalization, and migration within the cell. Additionally, viruses utilize the actin cytoskeleton to support and organize assembly sites, and eject budding virions for cell-to-cell transmission. It is the purpose of this review to provide an overview of current research, focusing on the various mechanisms and themes of virus-mediated actin modulation described therein.

3.
Experimental & Molecular Medicine ; : 389-392, 2011.
Article in English | WPRIM | ID: wpr-102685

ABSTRACT

Cellular senescence is a tumor-suppressive process instigated by proliferation in the absence of telomere replication, by cellular stresses such as oncogene activation, or by activation of the tumor suppressor proteins, such as Rb or p53. This process is characterized by an irreversible cell cycle exit, a unique morphology, and expression of senescence-associated-beta-galactosidase (SA-beta-gal). Despite the potential biological importance of cellular senescence, little is known of the mechanisms leading to the senescent phenotype. p41-Arc has been known to be a putative regulatory component of the mammalian Arp2/3 complex, which is required for the formation of branched networks of actin filaments at the cell cortex. In this study, we demonstrate that p41-Arc can induce senescent phenotypes when it is overexpressed in human tumor cell line, SaOs-2, which is deficient in p53 and Rb tumor suppressor genes, implying that p41 can induce senescence in a p53-independent way. p41-Arc overexpression causes a change in actin filaments, accumulating actin filaments in nuclei. Therefore, these results imply that a change in actin filament can trigger an intrinsic senescence program in the absence of p53 and Rb tumor suppressor genes.


Subject(s)
Humans , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/metabolism , Cellular Senescence , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Nucleus/metabolism , Fibroblasts/physiology , Recombinant Proteins/genetics , Retinoblastoma Protein/deficiency , Tumor Suppressor Protein p53/deficiency
4.
Genet. mol. biol ; 32(3): 652-665, 2009. ilus, tab
Article in English | LILACS | ID: lil-522338

ABSTRACT

Several motile processes are responsible for the movement of proteins into and within the flagellar membrane, but little is known about the process by which specific proteins (either actin-associated or not) are targeted to protozoan flagellar membranes. Actin is a major cytoskeleton protein, while polymerization and depolymerization of parasite actin and actin-interacting proteins (AIPs) during both processes of motility and host cell entry might be key events for successful infection. For a better understanding the eukaryotic flagellar dynamics, we have surveyed genomes, transcriptomes and proteomes of pathogenic Leishmania spp. to identify pertinent genes/proteins and to build in silico models to properly address their putative roles in trypanosomatid virulence. In a search for AIPs involved in flagellar activities, we applied computational biology and proteomic tools to infer from the biological meaning of coronins and Arp2/3, two important elements in phagosome formation after parasite phagocytosis by macrophages. Results presented here provide the first report of Leishmania coronin and Arp2/3 as flagellar proteins that also might be involved in phagosome formation through actin polymerization within the flagellar environment. This is an issue worthy of further in vitro examination that remains now as a direct, positive bioinformatics-derived inference to be presented.


Subject(s)
Animals , Leishmania/genetics , Actins/metabolism , Computational Biology , Flagella , Phagosomes
5.
Chinese Journal of Practical Internal Medicine ; (12)2001.
Article in Chinese | WPRIM | ID: wpr-558102

ABSTRACT

Objective To construct the replication-deficient recombinant adenovirus coding ARP2 gene before the studies of gene transfection to ischemic myocardium.Methods From Dec.2004 to Oct.2005,in the Department of Cardiology,Changhai Hospital of the Second Military Medical Univesity,the ARP2-pAxCAwt was constructed by inserting the cDNA of interest into the SwaI site of pAxCAwt.Results The right direction of the insert was confirmed by restriction.Conclusion The direction of the insert must be confirmed by restriction analysis,and the DNA package protein is much helpful during the transfection of the recombinant cosmid to E.coli.

SELECTION OF CITATIONS
SEARCH DETAIL