Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Chinese journal of integrative medicine ; (12): 170-178, 2023.
Article in English | WPRIM | ID: wpr-971338

ABSTRACT

OBJECTIVE@#To explore the protective effect and possible mechanisms of bloodletting acupuncture at Jing-well points (BAJP) pre-treatment on acute hypobaric hypoxia (AHH)-induced myocardium injury rat.@*METHODS@#Seventy-five rats were randomly divided into 5 groups by a random number table: a control group (n=15), a model group (n=15), a BAJP group (n=15), a BAJP+3-methyladenine (3-MA) group (n=15), and a BANA (bloodletting at nonacupoint; tail bleeding, n=15) group. Except for the control group, the AHH rat model was established in the other groups, and the corresponding treatment methods were adopted. Enzyme-linked immunosorbent assay (ELISA) was used to detect creatine kinase isoenzyme MB (CK-MB) and cardiac troponins I (CTnI) levels in serum and superoxide dismutase (SOD) and malondialdehyde (MDA) levels in myocardial tissue. Hematoxylin-eosin (HE) staining was used to observe myocardial injury, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining was used to observe cell apoptosis. Transmission electron microscopy detection was used to observe mitochondrial damage and autophagosomes in the myocardium. The mitochondrial membrane potential of the myocardium was analyzed with the fluorescent dye JC-1. Mitochondrial respiratory chain complex (complex I, III, and IV) activities and ATPase in the myocardium were detected by mitochondrial respiratory chain complex assay kits. Western blot analysis was used to detect the autophagy index and hypoxia inducible factor-1α (HIF-1α)/Bcl-2 and adenovirus E1B 19k Da-interacting protein 3 (BNIP3) signaling.@*RESULTS@#BAJP reduced myocardial injury and inhibited myocardial cell apoptosis in AHH rats. BAJP pretreatment decreased MDA levels and increased SOD levels in AHH rats (all P<0.01). Moreover, BAJP pretreatment increased the mitochondrial membrane potential (P<0.01), mitochondrial respiratory chain complex (complexes I, III, and IV) activities (P<0.01), and mitochondrial ATPase activity in AHH rats (P<0.05). The results from electron microscopy demonstrated that BAJP pretreatment improved mitochondrial swelling and increased the autophagosome number in the myocardium of AHH rats. In addition, BAJP pretreatment activated the HIF-1α/BNIP3 pathway and autophagy. Finally, the results of using 3-MA to inhibit autophagy in BAJP-treated AHH rats showed that suppression of autophagy attenuated the treatment effects of BAJP in AHH rats, further proving that autophagy constitutes a potential target for BAJP treatment of AHH.@*CONCLUSION@#BAJP is an effective treatment for AHH-induced myocardial injury, and the mechanism might involve increasing HIF-1α/BNIP3 signaling-mediated autophagy and decreasing oxidative stress.


Subject(s)
Animals , Rats , Acupuncture Therapy , Altitude , Apoptosis , Autophagy , Bloodletting , Hypoxia/metabolism , Membrane Proteins/pharmacology , Mitochondrial Proteins/pharmacology , Oxidative Stress , Rats, Sprague-Dawley
2.
Chinese journal of integrative medicine ; (12): 932-940, 2023.
Article in English | WPRIM | ID: wpr-1010301

ABSTRACT

OBJECTIVE@#To explore the protective effect of bloodletting acupuncture at twelve Jing-well points on hand (BAJP) on acute hypobaric hypoxia (AHH)-induced brain injury in rats and its possible mechanisms.@*METHODS@#Seventy-five Sprague Dawley rats were divided into 5 groups by a random number table (n=15), including control, model, BAJP, BAJP+3-methyladenine (3-MA), and bloodletting acupuncture at non-acupoint (BANA, tail tip blooding) groups. After 7-day pre-treatment, AHH models were established using hypobaric oxygen chambers. The levels of S100B, glial fibrillary acidic protein (GFAP), superoxide dismutase (SOD), and malondialdehyde (MDA) in serum were measured by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling method were used to assess hippocampal histopathology and apoptosis. Transmission electron microscopy assay was used to observe mitochondrial damage and autophagosomes in hippocampal tissues. Flow cytometry was used to detect mitochondrial membrane potential (MMP). The mitochondrial respiratory chain complexes I, III and IV activities and ATPase in hippocampal tissue were evaluated, respectively. Western blot analysis was used to detect the protein expressions of Beclin1, autophagy protein 5 (ATG5), microtubule-associated protein 1 light chain 3 beta (LC3B), phosphatase and tensin homolog induced kinase 1 (PINK1), and Parkin in hippocampal tissues. The mRNA expressions of Beclin1, ATG5 and LC3-II were analyzed by quantitative real-time polymerase chain reaction.@*RESULTS@#BAJP treatment reduced hippocampal tissue injury and inhibited hippocampal cell apoptosis in AHH rats. BAJP reduced oxidative stress by decreasing S100B, GFAP and MDA levels and increasing SOD level in the serum of AHH rats (P<0.05 or P<0.01). Then, BAJP increased MMP, the mitochondrial respiratory chain complexes I, III and IV activities, and the mitochondrial ATPase activity in AHH rats (all P<0.01). BAJP improved mitochondrial swelling and increased the autophagosome number in hippocampal tissue of AHH rats. Moreover, BAJP treatment increased the protein and mRNA expressions of Beclin1 and ATG5 and LC3-II/LC3-I ratio in AHH rats (all P<0.01) and activated the PINK1/Parkin pathway (P<0.01). Finally, 3-MA attenuated the therapeutic effect of BAJP on AHH rats (P<0.05 or P<0.01).@*CONCLUSION@#BAJP was an effective treatment for AHH-induced brain injury, and the mechanism might be through reducing hippocampal tissue injury via increasing the PINK1/Parkin pathway and enhancement of mitochondrial autophagy.

3.
Acta Pharmaceutica Sinica ; (12): 2260-2265, 2021.
Article in Chinese | WPRIM | ID: wpr-887042

ABSTRACT

In order to clarify the influence of acute hypobaric hypoxia on the bile acids of the rat small intestine, we used ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to identify bile acids in the contents of the small intestine from untreated and acute hypobaric hypoxia-treated rats. Thirty-nine bile acids were detected; PCA and OPLS-DA analysis revealed marked differences in the composition of bile acids between the untreated and the acute hypobaric hypoxia groups. Bile acids were screened with VIP > 1, |log2FC| ≥ 1, P < 0.05, and a total of 7 bile acids with significant differences in content between the two groups were obtained, including 5 conjugated bile acids, 2 unconjugated bile acids; in addition, the content of conjugated bile acids has risen in the treated group. This study demonstrated the influence of high-altitude hypoxic environment on bile acid composition and metabolism in rats. All the animal experiments in this study were approved by the 940th Hospital Ethics Committee (approval No: 2020KYLL012).

4.
Chinese Pharmaceutical Journal ; (24): 1378-1381, 2012.
Article in Chinese | WPRIM | ID: wpr-860631

ABSTRACT

OBJECTIVE: To investigate the effects of huperzine A in ameliorating acute hypobaric hypoxic-induced spatial memory deficits and in relieving oxidative stress injury in rat brain. METHODS: A total of 48 rats were randomly divided into four groups, the champaign group (control group), champaign + huperzine A group (0.1 mg · kg-1), high altitude group (simulated 6000 m plateau) and high altitude + huperzine A group. The Morris water maze learning and memory test, the concentration of GSH, MDA as well as the activities of CAT, SOD and LDH in hippocampus were measured and compared. RESULTS: Compared with those of high altitude group, escape latency of high altitude + huperzine A group was significantly shorter (P < 0.05), platform crossings within 60 s was significantly more (P < 0.05), time spent in target was significantly longer (P < 0.05), GSH content, SOD and CAT activity in hippocampal tissue were significantly higher (P < 0.05), MDA and LDH activity in hippocampal tissue was significantly lower (P < 0.05), and all these changes had no significantly difference as compared with the champaign group. CONCLUSION: Huperzine A treatment has protective effects against acute hypobaric hypoxic-induced oxidative stress injury in rat brain, and ameliorates spatial memory deficits in rats. Copyright 2012 by the Chinese Pharmaceutical Association.

5.
Space Medicine & Medical Engineering ; (6)2006.
Article in Chinese | WPRIM | ID: wpr-577982

ABSTRACT

Objective To explore the effects of mild and moderate acute hypobaric hypoxia on manual performance.Methods Using hypobaric chamber to simulate hypoxia conditions and devising 4 kinds of objective ergonomic testing items(Insert sticks into holes-board,ISIHB;nut-bolt assembly task,NBAT;shape discrimination,SD;and Grip strength,GS including fatigue and tolerance)and one subjective research item(questionnaire subjective sense)to examine manual work efficiency varieties of 9 subjects exposed to a hypobaric chamber with 5 simulated altitudes(3 500,4 000,4 500,5 000 and 5 500 m),for(25?5)min.Results Compared to control group(50 m,the altitude of Beijing):Accomplish time(AT)performance of ISIHB and NBAT significantly decreased(P

SELECTION OF CITATIONS
SEARCH DETAIL