Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pesqui. vet. bras ; 36(supl.1): 79-88, June 2016. tab, graf
Article in English | LILACS, VETINDEX | ID: lil-798013

ABSTRACT

The mammalian Wharton's jelly of umbilical cord (WJUC) is a promising source of multipotent cells, providing advantages due to ethical implications, ease of collection and the absence of teratomas in pre-clinical trials. Ovine multipotent cells have already been isolated from various tissues, however there are no reports using umbilical cords in this species. This study aimed to investigate the best medium to transport the umbilical cord, to isolate and maintain ovine WJUC cells and to compare in vitro growth and mesodermal differentiation potential. Eight ovine umbilical cords were obtained during parturition, sectioned and transported in six different media: MEM, low glucose DMEM, M199, RPMI 1640, PBS and saline. For each transportation medium, four culture media were used and the tissue was explanted in 24-well plates and cultured in MEM, low glucose DMEM, M199 and RPMI 1640, all with 10% FBS. Every experiment was conducted with low-passage (P2), investigating MTT viability during four days and adipogenic, chondrogenic and osteogenesis differentiation was induced in vitro. The most effective transport medium (p<0.1) was low glucose DMEM. There was no bacterial or fungal contamination from collection. Cells from Wharton's jelly of ovine umbilical cords collected at natural birth possess fibroblastic morphology and the capacity for in vitro differentiation into adipogenic, chondrogenic and osteogenic cell lines. MTT tests and in vitro differentiation experiments revealed that cell culture medium modulates the behavior of cells and is an important factor for proliferation and maintenance of multipotency. Low glucose DMEM was the most suitable medium for the isolation of cells from Wharton's jelly of ovine umbilical cord.(AU)


A geleia de Wharton do cordão umbilical (GWCU) de mamíferos é uma fonte promissora de células multipotentes, sendo vantajosa por aspectos éticos, facilidade de coleta e não causar teratomas em ensaios pré-clínicos. Em ovinos, células multipotentes já foram isoladas de vários tecidos, no entanto, não existem relatos do isolamento a partir do cordão umbilical nesta espécie. O objetivo do presente estudo foi investigar o melhor meio para o transporte do cordão umbilical, isolar e manter as células da GWCU ovino em diferentes meios e comparar a proliferação e o potencial de diferenciação mesodermal in vitro. Oito cordões umbilicais foram obtidos, por ocasião do parto natural, seccionados e transportados em seis diferentes meios que consistiram em MEM, DMEM baixa glicose, M199, RPMI 1640, PBS e soro fisiológico. Para cada meio de transporte foram utilizados quatro meios de cultivo, sendo o tecido explantado em placas de 24 poços e cultivados em MEM, DMEM baixa glicose, M199 e RPMI 1640, todos com 10% SFB. Todo o experimento foi realizado em baixa passagem (P2) investigando viabilidade pelo MTT por quatro dias além da indução à diferenciação adipogênica, condrogênica e osteogênica in vitro. O meio de transporte mais efetivo (P<0,10) foi o DMEM baixa glicose. Não houve contaminações bacterianas ou fúngicas decorrentes da coleta. Células oriundas da geleia de Wharton do cordão umbilical ovino colhido por ocasião do parto natural possuem morfologia fibroblastóide e capacidade de diferenciação in vitro nas linhagens adipogênica, condrogênica e osteogênica. Os ensaios de MTT e diferenciação in vitro, revelaram que o meio de cultura celular modula o comportamento destas células, sendo um fator importante tanto para a proliferação como para a manutenção da multipotência, destacando o DMEM baixa glicose como o meio mais adequado para o transporte e isolamento de células da geleia de Wharton do cordão umbilical ovino.(AU)


Subject(s)
Animals , Multipotent Stem Cells , Sheep , Umbilical Cord , Wharton Jelly , Adipogenesis , Chondrogenesis , Osteogenesis
2.
São Paulo; s.n; s.n; 2011. 88 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-837238

ABSTRACT

Considerando que a SAA é uma proteína de fase aguda e que uma concentração elevada desta proteína é observada em pacientes obesos e com resistência à insulina, estimulou-se pré-adipócitos murinos 3T3-L1 a baixas concentrações de rSAA durante o processo de proliferação e diferenciação. Ensaios de incorporação de [metil-3H]-timidina, ciclo e viabilidade celular por citometria de fluxo foram realizados, assim como genes adipogênicos foram determinados durante a fase de diferenciação. Ainda, investigou-se a participação da rSAA metabolismo da glicose, bem como a expressão do seu receptor GLUT4 e os perfis de lipólise. Como resultados, obteve-se que a rSAA causou um aumento na proliferação celular assim como na porcentagem de células na fase S. Este efeito foi dose dependente e mediado via sinalização da ERK1/2. Ainda, rSAA inibiu a diferenciação por meio da diminuição da expressão de fatores transcrição (PPARγ, C/EBPß e C/EBPα) e proteínas adipogênicas (FABP4 e perilipina). Em relação à captação de 2-desoxi-[1,2-3H]-D-glicose, a rSAA preveniu este processo, corroborando com os resultados de expressão diminuída receptor GLUT4. Ainda, o aumento da lipólise provocada pela rSAA, favorece resistência à insulina no modelo estudado. Portanto, conclui-se que a SAA aumenta a proliferação mas inibe a diferenciação de células 3T3-L1 sugerindo papel importante desta proteína no processo de adipogênese


Considering that SAA is an acute phase protein and increased serum levels are associated with chronic hyperglycemia, insulin resistance and obesity, we first examined the possibility that rSAA could affect proliferation and differentiation 3T3-L1 preadipocytes. 3T3-L1 adipocytes were treated with recombinant human SAA and [methyl-3H]-thymidine incorporation, flow cytometric analysis of cell cycle and viability were performed. Also, gene expression profiles of adipogenic factor were performed during differentiation protocol as well as glucose uptake, GLUT4 gene expression and lipolysis assay. rSAA caused an increment in cell proliferation consisted with FACS analysis with a percentage of cells in the S phase. Cell proliferation was mediated by ERK1/2 signaling pathway and in dose-dependent manner. Also, SAA inhibited differentiation process by decreasing adipogenic genes PPARγ, C/EBPß, C/EBPα, and proteins FABP4, and perilipin expression. Also, rSAA prevented 2-deoxy-[1,2-3H]-glucose uptake and GLUT4 expression. In addiction, lipolysis was increased favoring insulin resistance in 3T3L1 adipogenic model. In conclusion, it was demonstrated that rSAA enhances proliferation but prevents differentiation in 3T3-L1 adipocytes, supporting a even more complex participation, than previously expected, of inflammatory proteins the adipogenic process


Subject(s)
Adipocytes , 3T3-L1 Cells , Serum Amyloid A Protein/analysis , Insulin Resistance , Cell Proliferation , Adipogenesis , Inflammation , Obesity/complications
3.
Arq. bras. endocrinol. metab ; 53(5): 582-594, jul. 2009. ilus
Article in Portuguese | LILACS | ID: lil-525420

ABSTRACT

A obesidade é um dos principais problemas de saúde pública. Indivíduos obesos são mais suscetíveis a desenvolver doenças cardiovasculares e diabetes melito tipo 2. A obesidade resulta do aumento no tamanho e no número de adipócitos. O balanço entre adipogênese e adiposidade determina o grau de obesidade do indivíduo. Adipócitos maduros secretam adipocinas, tais como TNFα, IL-6, leptina e adiponectina, e lipocina, o ácido palmitoleico ω-7. A produção de adipocinas é maior na obesidade, o que contribui para o estabelecimento de resistência periférica à insulina. O conhecimento dos eventos moleculares que regulam a diferenciação dos pré-adipócitos e de células-tronco mesenquimais em adipócitos (adipogênese) é importante para o entendimento da gênese da obesidade. A ativação do fator de transcrição PPARγ é essencial na adipogênese. Certos ácidos graxos são ligantes de PPARγ e podem, assim, controlar a adipogênese. Além disso, alguns ácidos graxos atuam como moléculas sinalizadoras em adipócitos, regulando sua diferenciação ou morte. Dessa forma, a composição lipídica da dieta e os agonistas de PPARγ podem regular o balanço entre adipogênese e morte de adipócitos e, portanto, a obesidade.


Obesity is one of the major Public Health problems. Obese individuals are more susceptible to develop cardiovascular diseases and type 2 diabetes mellitus. The obesity results from the increase in size and number of the adipocytes. The balance between adipogenesis and adiposity determines the degree of obesity. Mature adipocytes secrete adipokines, such as TNFα, IL-6, leptine and adiponectin, and lipokine, the palmitoleic acid ω-7. The production of adipokines is increased in obesity, contributing to the onset of peripheral insulin resistance. The knowledge about the molecular events that regulate the differentiation of pre-adipocytes and mesenchymal stem cells into adipocytes (adipogenesis) is important for the comprehension of the genesis of obesity. Activation of transcription factor PPARγ plays an essential role in the adipogenesis. Certain fatty acids are PPARγ ligands and can control adipogenesis. Moreover, some fatty acids act as signaling molecules regulating their differentiation into adipocytes or death. Accordingly, the lipid composition of the diet and PPARγ agonists can regulate the balance between adipogenesis and death of adipocytes and, therefore, the obesity.


Subject(s)
Animals , Humans , Adipogenesis/physiology , Adipose Tissue/metabolism , Cardiovascular Diseases , Fatty Acids/metabolism , Obesity/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Adipogenesis/drug effects , Adipose Tissue/drug effects , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Fatty Acids/therapeutic use , Linoleic Acids, Conjugated/metabolism
4.
An. acad. bras. ciênc ; 80(1): 167-177, Mar. 2008. ilus, graf, tab
Article in English | LILACS | ID: lil-477424

ABSTRACT

Collagen XVIII can generate two fragments, NC11-728 containing a frizzled motif which possibly acts in Wnt signaling and Endostatin, which is cleaved from the NC1 and is a potent inhibitor of angiogenesis. Collagen XVIII and Wnt signaling have recently been associated with adipogenic differentiation and obesity in some animal models, but not in humans. In the present report, we have shown that COL18A1 expression increases during human adipogenic differentiation. We also tested if polymorphisms in the Frizzled (c.1136C>T; Thr379Met) and Endostatin (c.4349G>A; Asp1437Asn) regions contribute towards susceptibility to obesity in patients with type 2 diabetes (113 obese, BMI =30; 232 non-obese, BMI < 30) of European ancestry. No evidence of association was observed between the allele c.4349G>A and obesity, but we observed a significantly higher frequency of homozygotes c.1136TT in obese (19.5 percent) than in non-obese individuals (10.9 percent) [P = 0.02; OR = 2.0 (95 percentCI: 1.07-3.73)], suggesting that the allele c.1136T is associated to obesity in a recessive model. This genotype, after controlling for cholesterol, LDL cholesterol, and triglycerides, was independently associated with obesity (P = 0.048), and increases the chance of obesity in 2.8 times. Therefore, our data suggest the involvement of collagen XVIII in human adipogenesis and susceptibility to obesity.


Colágeno XVIII pode gerar dois fragmentos, um correspondendo à região NC11-728 contendo o motivo ''frizzled'', o qual possivelmente atua na sinalização Wnt, e outro correspondendo a Endostatina, que é clivada a partir da região NC1 e é uma potente inibidora de angiogênese. Colágeno XVIII e a via de sinalização Wnt foram recentemente associados à diferenciação adipogênica e obesidade em alguns modelosanimais, porém ainda não em humanos. No presente trabalho, mostramos que os níveis de expressão gênica do COL18A1 aumentam durante o processo de diferenciação adipogênica em humanos. Também testamos se polimorfismos localizados no motivo ''Frizzled'' (c.1136C > T; Thr379Met) e na região da Endostatina (c.4349G > A; Asp1437Asn) contribuem na predisposição a obesidade em pacientes com diabetes tipo 2. (113 obesos, BMI > 30; 232 não-obesos, BMI < 30) de ancestralidade Européia. Nenhuma evidência de associação entre o alelo c.4349G > A e obesidade foi observada, contudo, observamos uma freqüência significativamente maior de homozigotos c.1136TT em obesos (19.5 por cento) do que em não-obesos (10.9 por cento)[P = 0.02; OR = 2.0 (95 por centoCI: 1.07-3.73)], sugerindo que o alelo c.1136T está associado com obesidade conforme ummodelo recessivo. Este genótipo manteve-se associado à obesidade (P = 0.048) mesmo após o controle das variáveis colesterol, LDL e triglicérides, e confere um risco 2.8 vezes maior de obesidade. Portanto, nossos dados sugerem o envolvimento do colágeno XVIII em adipogênese humana e predisposição a obesidade.


Subject(s)
Female , Humans , Male , Middle Aged , Adipocytes/cytology , Adipogenesis/genetics , Collagen Type XVIII/genetics , /genetics , Obesity/genetics , Adipocytes/metabolism , Case-Control Studies , Collagen Type XVIII/metabolism , /metabolism , Endostatins/genetics , Endostatins/metabolism , Genetic Predisposition to Disease , Gene Expression/genetics , Obesity/metabolism , Polymerase Chain Reaction , Polymorphism, Genetic
5.
J. pediatr. (Rio J.) ; 83(5,supl): S192-S203, Nov. 2007. ilus, tab
Article in English | LILACS | ID: lil-470332

ABSTRACT

OBJETIVOS Mostrar os avanços na pesquisa sobre o papel fisiológico do tecido adiposo branco, ressaltando o seu papel endócrino em processos inflamatórios, no comportamento alimentar, na sensibilização à insulina e na modulação do processo de aterogênese. Abordar o potencial papel do tecido adiposo como fonte de células-tronco para regeneração de tecidos, com especial ênfase para a adipogênese e suas conseqüências para a geração de obesidade. FONTES DE DADOS: Informações importantes constantes da literatura científica foram compiladas de modo a que esta leitura contenha uma síntese esclarecedora dos aspectos mencionados acima. SÍNTESE DOS DADOS:O tecido adiposo possui, além das suas funções clássicas como principal estoque de energia metabólica, suprindo as necessidades energéticas em períodos de carência mediante a lipólise, a capacidade de sintetizar e secretar vários hormônios, as adipocinas. Estas agem em diversos processos, como o controle da ingestão alimentar (leptina) e o controle da sensibilidade à insulina e de processos inflamatórios (TNF-alfa, IL-6, resistina, visfatina, adiponectina). Além disso, como o tecido adiposo contém também células indiferenciadas, tem a habilidade de gerar novos adipócitos, regenerando o próprio tecido (adipogênese), bem como originar outras células (mioblastos, condroblastos, osteoblastos), fato este que tem grande potencial terapêutico em futuro não muito distante. CONCLUSÃO: Amplia-se o leque de possibilidades funcionais do tecido adiposo. A compreensão dessas potencialidades pode fazer deste tecido o grande aliado no combate de moléstias que atualmente vêm assumindo proporções epidêmicas (obesidade, diabetes melito, hipertensão arterial e arteriosclerose), nas quais o tecido adiposo ainda é tido como um grande vilão.


OBJECTIVES: To describe the advances in research into the physiological role of white adipose tissue, with emphasis on its endocrinal role in inflammatory processes, feeding behavior, insulin sensitization and modulation of the atherogenetic process. To deal with the potential role of adipose tissue as a source of stem cells for regeneration of tissues, with special emphasis on adipogenesis and its consequences for development of obesity. SOURCES: Important information was compiled from the scientific literature in order that this analysis contains an explanatory synthesis of the aspects mentioned above. SUMMARY OF THE FINDINGS In addition to its classical functions as primary metabolic energy store, meeting energy requirements during periods of deprivation by means of lypolisis, adipose tissue also has the capacity to synthesize and secrete a variety of hormones - the adipokines. These are active in a range of processes, such as control of nutritional intake (leptin) and control of sensitivity to insulin and inflammatory processes (TNF-alpha, IL-6, resistin, visfatin, adiponectin). Furthermore, since adipose tissue also contains undifferentiated cells, it has the ability to generate new adipocytes, regenerating its own tissue (adipogenesis), and also the ability to give rise to other cells (myoblasts, chondroblasts, osteoblasts), which has great therapeutic potential in the not-too-distant future. CONCLUSIONS: The range of functional possibilities of adipose tissue has widened. An understanding of these potentials could make this tissue a great ally in the fight against conditions that are currently assuming epidemic proportions (obesity, diabetes mellitus, arterial hypertension and arteriosclerosis) and in which adipose tissue is still seen as the enemy.


Subject(s)
Humans , Adipocytes/metabolism , Adipose Tissue/metabolism , Cardiovascular Diseases/metabolism , Endocrine Glands/metabolism , Adipose Tissue, Brown , Adipocytes/pathology , Adipogenesis/physiology , Adipokines/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Adipose Tissue/pathology , Cardiovascular Diseases/pathology , Diabetes Mellitus/metabolism , Endocrine Glands/pathology , Inflammation/metabolism , Inflammation/pathology , Lipogenesis/physiology , Lipolysis/physiology , Obesity/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL