Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Eng. sanit. ambient ; 26(6): 1015-1024, nov.-dez. 2021. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1350709

ABSTRACT

RESUMO Diversos trabalhos têm mostrado a formação de lodo granular aeróbio em reatores nos quais são impostas elevadas velocidades de sedimentação, da ordem de 10 a 12 m.h−1. Aparentemente, quando a velocidade de sedimentação é inferior a 3,8 m.h−1, a fração de lodo floculado é predominante, visto que o lodo suspenso não é eliminado de forma efetiva do reator. Outros estudos, entretanto, mostram a formação de lodos granulares aeróbios para velocidades menores que essa, apontando a possibilidade da formação desse tipo de biomassa em velocidades ainda menores. Assim, este trabalho avaliou a formação desse tipo de lodo em reatores que tratam esgoto sanitário, com relação altura/diâmetro unitária, para velocidades de sedimentação de 1,8 e 1,2 m.h−1, verificando as eficiências de remoção de matéria orgânica e nitrogênio. Os resultados obtidos indicaram que é possível formar lodo aeróbio granular para a faixa de velocidade de estudo, porém com baixa estabilidade estrutural para diâmetros de 1,2 mm ou mais. Essa instabilidade dos grânulos contribui para a baixa eficiência de remoção de matéria orgânica e nitrogênio nos reatores.


ABSTRACT Several studies have shown the formation of aerobic granular sludge in reactors where high sedimentation rates are imposed, varying from 10 to 12 m.h−1. Apparently, when the settling velocity is less than 3.8 m.h−1, the fraction of flocculated sludge is predominant, since the suspended sludge is not effectively eliminated from the reactor. Other studies, however, show the formation of aerobic granular sludge at velocities lower than this, pointing to the possibility of formation of this type of biomass at even lower speeds. Thus, this work evaluated the efficacy of this type of sludge in reactors treating sewage, with H/D ratio (height/diameter), for sedimentation velocities of 1.8 and 1.2 mh−1, verifying the efficiencies of organic matter and nitrogen. The results indicated that it is possible to form aerobic granular sludge for the study velocity range, but with low structural stability from diameters of approximately 1.2 mm. This instability of the granules contributes to the low efficiency of removal of organic matter and nitrogen in the reactors.

2.
Eng. sanit. ambient ; 25(3): 439-449, maio-jun. 2020. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1133788

ABSTRACT

RESUMO Considerado por muitos profissionais como um dos maiores avanços do século 21 na área de tratamento de esgotos, os reatores de lodo granular aeróbio (LGA) vêm recebendo bastante atenção em termos de pesquisa e instalação em escala plena em diferentes continentes e condições climáticas. São frequentes os relatos na literatura de eficiências de remoção acima de 90% em termos de demanda química de oxigênio, nitrogênio total e fósforo total, além da manutenção no reator de elevadas concentrações de sólidos (> 8 g SSV/L) sem a necessidade de decantador secundário e recirculação de lodo. Contudo, há também diversos relatos de problemas de instabilidade da biomassa, longo período de formação dos grânulos (principalmente quando se utiliza esgoto real), formação de grânulos pequenos, acúmulo de nitrito e outras questões. Esta revisão explora os mecanismos necessários para granulação em estações de tratamento de esgoto em escala plena no tratamento de esgoto sanitário, incluindo os principais grupos microbianos presentes no LGA, parâmetros-chave para a formação dos grânulos, configurações de reator etc. Além disso, discutem-se algumas questões sobre a operação e a manutenção desses sistemas em escala plena.


ABSTRACT Considered by many professionals as one of the greatest advances in wastewater treatment in the 21st century, the aerobic granular sludge (AGS) reactors have received great attention in terms of research and full-scale installation in different continents and weather conditions. There are frequent reports in the literature on removal efficiencies above 90% in terms of COD, total nitrogen and total phosphorus, as well as the maintenance of high solids concentrations (> 8 g VSS/L) in the reactor without the need for secondary clarifier and sludge recirculation. However, there are also several reports on problems of biomass instability, long periods of granule formation (mainly when using real sewage), formation of small granules, nitrite accumulation (incomplete denitrification), and other issues. This review explores the mechanisms required for granulation in full-scale WWTP treating sanitary wastewater, including the main microbial groups present in the AGS, key granule formation parameters, reactor configurations, etc. In addition, some issues on the operation and maintenance of these full-scale systems are discussed.

3.
J Environ Biol ; 2013 Apr; 34(2suppl): 409-419
Article in English | IMSEAR | ID: sea-148545

ABSTRACT

In this study, two adverse environments: low dissolved oxygen (DO) and high ammonia concentration, were employed to investigate the morphology, interspecies quorum sensing, extracellular polymers (EPS) characterization and microbial communities in the formation of aerobic granular sludge. Results showed that low DO could promote filamentous bacterial outgrowth. Under high ammonia concentration aerobic granular sludge (AGS) could still be cultivated, although it was looser and lighter than the control group. During the early stage of the AGS cultivation process, AI-2 activity reached a peak value in all three reactors, and ultrasonic pre-treatment was not beneficial to the release of AI-2. During AGS formation, the production of polysaccharide exhibited increases from 12.2 % to 40.3 %, 49.6 %, and 29.3 %. And PS in R2 was the highest as the result of sludge bulking. PS/PN was 1.5~8 in the three reactors. Three-dimensional EEM fuorescence spectroscopy variation indicated the change of protein in EPS, and the highest intensity of Peak T1 was obtained. The location shift of Peak T1 was not obvious, and Peaks A, C, and T2 shifted toward longer wavelengths (red shift) of 5~60 nm, or shorter wavelengths (blue shift) of 10~25 nm on the emission scale and / or excitation scale in all three reactors. This provided spectral information on the chemical structure changes. Bacteria in R3 had the highest species diversity, and all bacteria in b-Proteobacteria were identified as genus Thauera, which suggested that simultaneous nitrification and denitrification occurred in R3. The filamentous bacteria in seed sludge and R2 were species-richer. There was a low abundance of filamentous bacteria in R1 and R3, which contributed to the granule structure stability.

SELECTION OF CITATIONS
SEARCH DETAIL