Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 126-133, 2023.
Article in Chinese | WPRIM | ID: wpr-953932

ABSTRACT

ObjectiveAgrobacterium tumefaciens-mediated transformation (ATMT) of Clonostachys rosea, an endophytic fungus of Glycyrrhiza uralensis seeds, was established and optimized, and orthogonal test was designed to optimize the colonization conditions of C. rosea for G. uralensis seeds, so as to lay foundation for the development of biofertilizer and the breeding of high-quality G. uralensis. MethodThe conditions of ATMT were optimized from three aspects, including the concentration of acetosyringone, co-culture time and the concentration of conidia of recipient fungi. Then, high-quality transformants were selected. Orthogonal test was used to optimize the colonization conditions by taking co-culture temperature, co-culture time and spore concentration as factors and colonization rate as index. ResultWhen spore concentration was 1×107 cfu·mL-1, acetosyringone concentration was 150 μmol·L-1 and the co-culture time was 60 h, the transformation efficiency of C. rosea was the highest, which was 135 transformants per 1×107 recipient fungal spores. The accuracy and stability of the transformations were tested by cloning the marker gene green fluorescent protein (GFP) and β-glucuronidase (GUS) staining. When co-culture temperature was 25 ℃, co-culture time was 36 h and the spore concentration was 1×106 cfu·mL-1, the colonizing rate for C. rosea back dyeing into G. uralensis seeds by seed soaking method was the highest, which was 71.11%. ConclusionThis study successfully establishes stable and efficient technical systems not only of ATMT in C. rosea, but also of colonization of the transformants into G. uralensis seeds, which can lay a foundation for the development of biofertilizer of G. uralensis.

2.
Mycobiology ; : 59-65, 2019.
Article in English | WPRIM | ID: wpr-760526

ABSTRACT

Agrobacterium tumefaciens-mediated transformation (ATMT), as a simple and versatile method, achieves successful transformation in the yeast-like cells (YLCs) of Tremella fuciformis with lower efficiency. Establishment of a more efficient transformation system of YLCs is important for functional genomics research and biotechnological application. In this study, an enzymolysis-assisted ATMT method was developed. The degradation degree of YLCs depends on the concentration and digestion time of Lywallzyme. Lower concentration (≤0.1%) of Lywallzyme was capable of formation of limited wounds on the surface of YLCs and has less influence on their growth. In addition, there is no significant difference of YLCs growth among groups treated with 0.1% Lywallzyme for different time. The binary vector pGEH under the control of T. fuciformis glyceraldehyde-3-phosphate dehydrogenase gene (gpd) promoter was utilized to transform the enzymolytic wounded YLCs with different concentrations and digestion time. The results of PCR, Southern blot, quantitative real-time PCR (qRT-PCR) and fluorescence microscopy revealed that the T-DNA was integrated into the YLCs genome, suggesting an efficient enzymolysis-assisted ATMT method of YLCs was established. The highest transformation frequency reached 1200 transformants per 106 YLCs by 0.05% (w/v) Lywallzyme digestion for 15 min, and the transformants were genetically stable. Compared with the mechanical wounding methods, enzymolytic wounding is thought to be a tender, safer and more effective method.


Subject(s)
Agrobacterium , Blotting, Southern , Digestion , Genome , Genomics , Methods , Microscopy, Fluorescence , Oxidoreductases , Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Wounds and Injuries
SELECTION OF CITATIONS
SEARCH DETAIL