Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Biomedical and Environmental Sciences ; (12): 602-613, 2019.
Article in English | WPRIM | ID: wpr-773366

ABSTRACT

OBJECTIVE@#To comparatively study the toxicity of four metal-containing nanoparticles (MNPs) and their chemical counterparts to the air-blood barrier (ABB) permeability using an in vitro model.@*METHODS@#ABB model, which was developed via the co-culturing of A549 and pulmonary capillary endothelium, was exposed to spherical CuO-NPs (divided into CuO-40, CuO-80, and CuO-100 based on particle size), nano-Al2O3 (sheet and short-rod-shaped), nano-ZnO, nano-PbS, CuSO4, Al2(SO4)3, Zn(CH3COO)2, and Pb(NO3)2 for 60 min. Every 10 min following exposure, the cumulative cleared volume (ΔTCL) of Lucifer yellow by the model was calculated. A clearance curve was established using linear regression analysis of ΔTCL versus time. Permeability coefficient (P) was calculated based on the slope of the curve to represent the degree of change in the ABB permeability.@*RESULTS@#The results found the increased P values of CuO-40, CuO-80, sheet, and short-rod-shaped nano-Al2O3, Al2(SO4)3, and Pb(NO3)2. Among them, small CuO-40 and CuO-80 were stronger than CuO-100 and CuSO4; no difference was observed between Al2(SO4)3 and sheet and short-rod-shaped nano-Al2O3; and nano-PbS was slightly weaker than Pb(NO3)2. So clearly the MNPs possess diverse toxicity.@*CONCLUSION@#ABB permeability abnormality means pulmonary toxicity potential. More studies are warranted to understand MNPs toxicity and ultimately control the health hazards.


Subject(s)
Humans , A549 Cells , Blood-Air Barrier , Metabolism , Epithelium , Metabolism , Metal Nanoparticles , Toxicity , Particle Size , Permeability
2.
Korean Journal of Anatomy ; : 65-76, 2000.
Article in Korean | WPRIM | ID: wpr-650144

ABSTRACT

The air-blood barrier represents the maturity of developing lung. The development of air-blood barrier in human fetal lung was studied by transmission electron microscopy. The results obtained were as follows. 1. The formation of air-blood barrier started at 16 week of postcoitum, which was the end of pseudoglandular period. The basement membranes began to be fused with each other as the capillaries penetrated between epithelial cells of primitive alveoli. 2. The flattening of the type II alveolar cells was observed only around the site of fused basement membranes, which seemed to be developed not by mechanical force but by induction of the fused basement membrane. 3. The basement membranes of capillaries and alveoli were relatively flat until the fusion occurred, but they showed severe folds with the occurrence of fusion. But with the proceeding of the terminal sac period, the folds greatly decreased. In summary, the air-blood barrier began to develop at the end of pseudoglandular period and was formed as capillaries penetrated the cytoplasms of epithelial cells devoided of the nuclei. The fused basement membranes seems to play an important role in the development of air-blood barrier.


Subject(s)
Humans , Basement Membrane , Blood-Air Barrier , Capillaries , Cytoplasm , Epithelial Cells , Lung , Microscopy, Electron, Transmission , Pulmonary Alveoli
SELECTION OF CITATIONS
SEARCH DETAIL