Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Article | IMSEAR | ID: sea-189582

ABSTRACT

Aims: This study was conducted to detect the presence of cyanide in popular fruit and vegetable smoothies and juices marketed as raw and natural. Study Design: Eleven (11) popular varieties of drinks were analyzed for total cyanide (TCN). Drinks contained raw vegetables and fruits, flax seeds, whole apples with seeds, raw almond milk, and pasteurized almond milk as ingredients. Place and Study Duration: Samples were collected from health food eateries located within Las Vegas, Nevada (USA) during the summer of 2017. Methodology: Fifty milliliters (mL) of a homogenized smoothie and juice drink and 1 gram of flax seeds were subjected to the above-referenced methods for sample preparation per USEPA Methods 9012B (digestion) followed by USEPA method 9014 (colorimetry). Results: The highest TCN was detected in drinks containing raw flax seed followed by unpasteurized raw almond milk, then fresh whole apple juice. No TCN was observed in drinks that contained none of the above mentioned items (e.g. flax seed, raw almond milk) or those utilizing pasteurized ingredients. Conclusion: This study observed that TCN is present in smoothies and juices containing raw flax seeds, fresh whole apples, and/or unpasteurized almond milk. Concentrations were detected as high as 341 μg L-1 in commercially available smoothies containing vegetables, raw flax seeds, almond milk and fruits. Smoothies with vegetables, fruits, unpasteurized almond milk, and no flax seeds contained 41 ug L-1TCN, while similar smoothies with pasteurized almond milk contained negligible to 9.6 ug L-1 CN-. Unpasteurized almond milk and raw flax seeds were the major sources of TCN in drinks. With the increased demand for raw and natural foods, there is a potential sublethal exposure of TCN by consumers.

2.
Indian Heart J ; 2018 Jul; 70(4): 497-501
Article | IMSEAR | ID: sea-191602

ABSTRACT

Objective Omega-3 fatty acids, especially alpha-linolenic acid (ALA), which are present in nuts may reduce cardiovascular disease (CVD) risk, by changing vascular inflammation and improving endothelial dysfunction. The objective of the study was to evaluate the acute effects of two different diets, one containing walnuts and the other almonds on endothelial function. Methods Twenty-seven overweight volunteers underwent a randomized 2-period, crossover, controlled intervention study. The subjects were given either walnut or almond diets which varied in monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA) content. The walnut diet provided 23.1% energy from PUFA and the almond diet provided 7.6% energy from PUFA. Endothelial function was assessed physiologically by flow-mediated dilation (FMD) and biochemically by sVCAM (soluble vascular cell adhesion molecules). Results The walnut diet significantly improved FMD (p = 0.004) and decreased sVCAM (p = 0.009) whereas the almond diet tended to improve FMD (p = 0.06) and significantly decreased sVCAM (p = 0.004). Conclusion Both walnut and almond diets improved FMD and sVCAM and there was no significant difference in physiological and biochemical markers between the two diets.

3.
Food Sci. Technol (SBCTA, Impr.) ; 37(4): 632-639, Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-892201

ABSTRACT

Abstract The Brazilian Cerrado presents a wide variety of natural products, including the Pequi (Caryocar brasiliense). The important factor that determines the dietary and nutritional ideality of protein is degestitibility. This work aims to evaluate the protein digestibility of Pequi seeds and the presence of anti-nutritional factors. The protein Pequi almonds were extracted, toasted and untoasted. Evaluation digestibility was structurally characterized by SDS-PAGE 15%, which can be used to analyze simulated gastric fluid (SFG) and digestion in intestinal fluid (SFI) in the presence of pepsin and trypsin/chymotrypsin. The extract from Pequi almonds showed inhibitory activity and was not detected hemagglutination. The intensity of the bands according to 2S albumins, after heat treatment, did not decrease in comparison to the condition native, significantly. In the crisp crude extract, which was incubated under SGF and SIF, the intensity of the corresponding bands at 8 and 3 kDa was resistant to SGF and indigestible after 4 hours under SIF. The characterization of Pequi almonds demonstrated that the product of the crude extract has anti-nutritional factors, which were confirmed by evaluating digestibility.

4.
Electron. j. biotechnol ; 28: 47-51, July. 2017. tab
Article in English | LILACS | ID: biblio-1015841

ABSTRACT

Background: The yield of almonds [Prunus dulcis (Mill.) D.A. Webb] could be low due to climatic problems and any factor improving kernel size and weight, such as the use of plant bioregulators (PBRs), should be beneficial. Results: Three plant bioregulators: 24-epibrassinolide (BL), gibberellic acid (GA3) and kinetin (KN) were applied at three spray concentrations to Non Pareil and Carmel cultivars, at two phenological stages during bloom, in the 2014 and 2015 seasons. The results showed significant differences (P b 0.0001). For total dry weight of Non Pareil, the best treatment was BL (30 mg·L-1), with an average of 1.45 g, while the control was 1.30 g, at pink button during 2015. For Carmel, the best dry weight was 1.23 g, achieved with BL (30 mg·L-1) at fallen petals in both seasons. The average dry weight of the controls varied between 1.13 and 1.18 g. The greatest almond lengths and widths in Non Pareil were 24.98 mm and 15.05 mm, achieved with BL (30 mg·L-1) and KN (50 µL·L-1) treatments, respectively, applied at pink button in 2015. In Carmel, the greatest length and width were 24.38 and 13.44 mm, obtained with BL (30 mg·L-1) applied at the stages of pink button and fallen petals, respectively, in 2015. The control reached lengths between 22.33 and 23.38 mm, and widths between 11.99 and 12.93 mm. Conclusions: The use of the bioregulators showed significant favorable effects on dry weight, length and width of kernels at harvest, in both cultivars.


Subject(s)
Plant Growth Regulators/metabolism , Prunus dulcis/growth & development , Brassinosteroids/metabolism , Gibberellins/metabolism , Kinetin/metabolism
5.
Nutrition Research and Practice ; : 479-486, 2017.
Article in English | WPRIM | ID: wpr-27727

ABSTRACT

BACKGROUND/OBJECTIVES: Timing of almond intake during a day may result differently in the perspectives of body composition and changes of lipid profile. The current study was conducted to compare the effects of daily almond intake as a preload versus as a snack on body composition, blood lipid profile, and oxidative and inflammation indicators among young Korean adults aged 20–39 years old. SUBJECTS/METHODS: Participants were randomly assigned to one of three groups: a pre-meal almond group (PM), a snack almond group (SN) in which participants were instructed to consume 56 g of almonds either as a preload before meals or as a snack between meals, respectively, and a control group (CL) in which participants were provided high-carbohydrate iso-caloric control food. Measurements were performed at baseline, weeks 8 and 16. RESULTS: A total of 169 (M 77/F 92) out of the 227 participants completed the study between June 2014 and June 2015 (n = 58 for PM; 55 for SN; and 56 for CL). A significant decrease in body fat mass was observed in the PM group at both weeks 8 and 16 compared with the CL. There were significant intervention effects on changes of body fat mass (P = 0.025), body fat percentages (P = 0.019), and visceral fat levels (P < 0.001). Consuming almonds as a daily snack reduced the levels of total cholesterol (P = 0.043) and low-density lipoprotein (LDL) cholesterol (P = 0.011) without changing high-density lipoprotein (HDL) cholesterol compared with the CL. CONCLUSION: Almond consumption as a preload modified body fat percentages, whereas snacking on almonds between meals improved blood lipid profiles. This trial was registered at ClinicalTrials.gov as NCT03014531.


Subject(s)
Adult , Humans , Adipose Tissue , Body Composition , Cholesterol , Inflammation , Intra-Abdominal Fat , Lipoproteins , Meals , Prunus dulcis , Snacks
6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 703-709, 2017.
Article in English | WPRIM | ID: wpr-812065

ABSTRACT

Medicinal almonds have been used for over 2 000 years and its clinical efficacy includes relieving cough and asthma. The domestic market in China is flooded with different kinds of dried almonds, such as bitter almond (Armeniacae Semen Amarum, AAS), sweet almond (Armeniacae Semen Dulce, ADS), salted almond (Armeniacae Semen Salsa, ASS), and their sulfur-fumigating products (Armeniacae Semen Sulphur Fumabat, ASFS). Wide varieties of almonds may lead to uncertain efficacy, aberrant quality, and even increased safety risk. However, the authentication method for medicinal almonds has not been reported, although imposters may lead to ineffective medical response. In the present study, Fourier transform infrared spectroscopy (FTIR) and the 2-dimensional infrared (2D-IR) spectroscopy were used to identify different almonds, which were extracted with different solvents including water, methanol, ethanol, chloroform and ethyl acetate, respectively. A new simple FTIR method was developed in the present study. According to the gradient solvent polarity, a new 2D IR method was first developed, and the commodities of almonds in China were analyzed by using the FTIR spectroscopy supported by hierarchical clustering of characteristic peaks. Moreover, 5-hydroxymethyl-2-furfural could be used as a detection index and control target in the quality control of medicinal almonds.


Subject(s)
China , Drugs, Chinese Herbal , Chemistry , Prunus dulcis , Chemistry , Quality Control , Seeds , Chemistry , Spectroscopy, Fourier Transform Infrared , Methods
SELECTION OF CITATIONS
SEARCH DETAIL