Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Tissue Engineering and Regenerative Medicine ; (6): 393-402, 2018.
Article in English | WPRIM | ID: wpr-716169

ABSTRACT

BACKGROUND: To develop the biodegradability and thermoresponsive hydrogel, in this work we designed a pendant-functionalized, thermoresponsive, amphiphilic block copolymer. METHODS: Methoxy poly(ethylene glycol) (MPEG)-b-[poly(ε-caprolactone)-ran-poly(ε-caprolactone-3-one)-ran-polylactic acid] (MCL) and (MPEG-b-[PCL-ran-POD-ran-PLA]) [MCL-(CO)] block copolymers were prepared by ringopening polymerization of ε-caprolactone, OD and lactide monomers. The subsequent derivatization of MCL-(CO) provided MPEG-b-[PCL-ran-poly(ε-caprolactone-3-COOH)-ran-PLA] [MCL-(COOH)] with COOH pendant groups and MPEG-b-[PCL-ran-poly(ε-caprolactone-3-NH2)-ran-PLA] [MCL-(NH2)] with NH2 pendant groups. RESULTS: The measured segment ratios of MCL-(CO), MCL-(COOH), and MCL-(NH2) agreed well with the target ratios. The abundances of the COOH and NH2 groups in the MCL-(COOH) and MCL-(NH2) copolymers were determined by 1H- and 13C-nuclear magnetic resonance spectroscopy, and agreed well with the target abundances. MCL-(CO), MCL-(COOH), and MCL-(NH2) formed homogeneous, white, opaque emulsions at room temperature. Rheological analysis of the block copolymer suspensions indicated a solution-to-hydrogel phase transition as a function of temperature. The solution-to-hydrogel phase transitions and the biodegradation of MCL-(CO), MCL-(COOH), and MCL-(NH2) were affected by varying the type (ketone, COOH, or NH2) and abundance of the pendant groups. CONCLUSION: MCL-(CO), MCL-(COOH), and MCL-(NH2) with ketone, COOH, and NH2 pendant groups showed solution-to-hydrogel phase transitions and biodegradation behaviors that depended on both the type and number of pendant groups.


Subject(s)
Emulsions , Hydrogels , Magnetic Resonance Spectroscopy , Phase Transition , Polymerization , Polymers , Suspensions
2.
International Journal of Biomedical Engineering ; (6): 65-70,后插1, 2013.
Article in Chinese | WPRIM | ID: wpr-598347

ABSTRACT

Polymersomes have attracted tremendous attention as novel drug delivery systems because of their unique and superior structure,tunable membrane properties,colloidal stability,and ability in encapsulating a broad range of both water soluble and insoluble substances.In this paper,preparation method and criteria for the formation of polymersomes,their structure and characterization as well as amphiphilic block copolymers for vesicle formation are addressed.Moreover,research progress on polymersomes as drug delivery system in the field of therapeutic and diagnostic applications are reviewed in this paper.

SELECTION OF CITATIONS
SEARCH DETAIL