Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Mem. Inst. Oswaldo Cruz ; 118: e230084, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1506733

ABSTRACT

BACKGROUND Few studies have focused on microbial diversity in indoor environments of ships, as well as the role of the microbiome and its ecological interconnections. In this study, we investigated the microbiome and virome present on the internal surfaces of a polar ship in different stages (beginning, during, and at the end) of the Brazilian Antarctic expedition in order to evaluate abundance of microorganisms in different periods. OBJECTIVES AND METHODS We used shotgun metagenomic analysis on pooled samples from sampling surfaces in the ship's interior to track the microbial diversity. FINDINGS Considering the total fraction of the microbiome, the relative abundance of bacteria, eukaryotes, viruses, and archaea was 83.7%, 16.2%, 0.04%, and 0.002%, respectively. Proteobacteria was the most abundant bacterial phyla, followed by Firmicutes, Actinobacteria, and Bacteroidetes. Concerning the virome, the greatest richness of viral species was identified during the middle of the trip, including ten viral families after de novo assembly: Autographiviridae, Chrysoviridae, Genomoviridae, Herelleviridae, Myoviridae, Partitiviridae, Podoviridae, Potyviridae, Siphoviridae, and Virgaviridae. MAIN CONCLUSIONS This study contributed to the knowledge of microbial diversity in naval transportation facilities, and variations in the abundance of microorganisms probably occurred due to factors such as the number of passengers and activities on the ship.

2.
Electron. j. biotechnol ; 48: 1-12, nov. 2020. tab, graf, ilus
Article in English | LILACS | ID: biblio-1254671

ABSTRACT

BACKGROUND: The potential waste canola oil-degrading ability of the cold-adapted Antarctic bacterial strain Rhodococcus sp. AQ5-07 was evaluated. Globally, increasing waste from food industries generates serious anthropogenic environmental risks that can threaten terrestrial and aquatic organisms and communities. The removal of oils such as canola oil from the environment and wastewater using biological approaches is desirable as the thermal process of oil degradation is expensive and ineffective. RESULTS: Rhodococcus sp. AQ5-07 was found to have high canola oil-degrading ability. Physico-cultural conditions influencing its activity were studied using one-factor-at-a-time (OFAT) and statistical optimisation approaches. Considerable degradation (78.60%) of 3% oil was achieved by this bacterium when incubated with 1.0 g/L ammonium sulphate, 0.3 g/L yeast extract, pH 7.5 and 10% inoculum at 10°C over a 72-h incubation period. Optimisation of the medium conditions using response surface methodology (RSM) resulted in a 9.01% increase in oil degradation (87.61%) when supplemented with 3.5% canola oil, 1.05 g/L ammonium sulphate, 0.28g/L yeast extract, pH 7.5 and 10% inoculum at 12.5°C over the same incubation period. The bacterium was able to tolerate an oil concentration of up to 4.0%, after which decreased bacterial growth and oil degradation were observed. CONCLUSIONS: These features make this strain worthy of examination for practical bioremediation of lipid-rich contaminated sites. This is the first report of any waste catering oil degradation by bacteria originating from Antarctica.


Subject(s)
Rhodococcus/physiology , Rapeseed Oil/metabolism , Waste Products , Biodegradation, Environmental , Adaptation, Physiological , Cold Temperature , Wastewater , Hydrogen-Ion Concentration , Antarctic Regions
3.
J Ayurveda Integr Med ; 2020 Apr; 11(2): 97-100
Article | IMSEAR | ID: sea-214120

ABSTRACT

Background: Extreme environments are inherently stressful and are characterized by a variety of physicaland psychosocial stressors, including, but not limited to, isolation, confinement, social tensions, minimalpossibility of medical evacuation, boredom, monotony, and danger. Previous research studies recommend adaptation to the environment to maintain optimal function and remain healthy. Different interventions have been tried in the past for effective management of stress. Yoga practices have beenshown to be beneficial for coping with stress and enhance quality of life, sleep and immune status.Objective: The current article describes preparation of a Yoga module for better management of stressorsin extreme environmental condition of Antarctica.Materials and methods: A Yoga module was designed based on the traditional and contemporary yogaliterature as well as published studies. The Yoga module was sent for validation to forty experts of whichthirty responded.Results: Experts (n ¼ 30) gave their opinion on the usefulness of the yoga module. In total 29 out of 30practices were retained. The average content validity ratio and intra class correlation of the entiremodule was 0.89 & 0.78 respectively.Conclusion: A specific yoga module for coping and facilitating adaptation in Antarctica was designed andvalidated. This module was used in the 35th Indian Scientific expedition to Antarctica, and experimentsare underway to understand the efficacy and utility of Yoga on psychological stress, sleep, serum biomarkers and gene expression. Further outcomes shall provide the efficacy and utility of this module inAntarctic environments.© 2018 The Authors. Published by Elsevier B.V. on behalf of Institute of Transdisciplinary Health Sciencesand Technology and World Ayurveda Foundation. This is an open access article under the CC BY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)

4.
Psicol. pesq ; 13(2): 147-168, maio-ago. 2019. tab
Article in Portuguese | LILACS-Express | LILACS, INDEXPSI | ID: biblio-1098521

ABSTRACT

O objetivo deste estudo foi avaliar a variação das estratégias de coping e padrões de sono em 13 expedicionários do sexo masculino da aviação naval no início e ao final de uma expedição de verão à Antártica. Para investigar as variáveis de coping e de sono foram utilizadas a escala BriefCOPE, um questionário de ritmos biológicos e um formulário sociodemográfico para controle de variáveis. As estratégias de coping focadas na emoção do tipo disfuncional aumentaram de maneira significativa ao longo da exposição, e não houve relação entre as alterações nos padrões de sono e as estratégias de coping no início e no fim da exposição ao ambiente. A atenção a fatores psicológicos em ambientes polares pode prevenir acidentes no contexto.


The objective of this study was to evaluate the variation of coping strategies and sleep patterns in 13 male naval aviation expeditioners at the beginning and end of a summer expedition to Antarctica. To investigate the coping and sleep variables, the BriefCOPE scale was used, a biological rhythm questionnaire and a sociodemographic form to control variables. Emotion-focused coping strategies of the dysfunctional type increased significantly throughout the exposure and there was no relationship between changes in sleep patterns and coping strategies between the onset and end of exposure to the environment. Attention to psychological factors in polar environments can prevent accidents in context.

5.
Biol. Res ; 52: 5, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011408

ABSTRACT

BACKGROUND: A moderately thermophilic, slightly halophilic, aerobic, Gram-stain negative, bacterial strain, SLM16, was isolated from a mixed of seawater-sand-sediment sample collected from a coastal fumarole located in Whalers Bay, Deception Island, Antarctica. The aim was to screen for thermophilic microorganisms able to degrade primary amines and search for amine transaminase activity for potential industrial application. RESULTS: Identification and partial characterization of the microorganism SLM16 were carried out by means of morphological, physiological and biochemical tests along with molecular methods. Cells of strain SLM16 were non-motile irregular rods of 1.5-2.5 µm long and 0.3-0.45 µm wide. Growth occurred in the presence of 0.5-5.5% NaCl within temperature range of 35-55 °C and pH range of 5.5-9.5, respectively. The DNA G+C composition, estimated from ftsY gene, was 66% mol. Phylogenetic analysis using de 16S rRNA gene sequence showed that strain SLM16 belongs to the marine bacterial genus Albidovulum. CONCLUSION: Strain SLM16 is a moderate thermophilic Gram negative microorganisms which belongs to the marine bacterial genus Albidovulum and is closely related to Albidovulum inexpectatum species based on phylogenetic analysis. Additionally, amine-transaminase activity towards the arylaliphatic amine α-methylbenzylamine was detected.


Subject(s)
Seawater/microbiology , DNA, Bacterial/genetics , Rhodobacteraceae/isolation & purification , Rhodobacteraceae/enzymology , Transaminases/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , Sequence Analysis, DNA , Rhodobacteraceae/classification , Antarctic Regions
6.
Braz. j. microbiol ; 49(4): 695-702, Oct.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-974298

ABSTRACT

ABSTRACT Antarctica harbors a great diversity of microorganisms, including bacteria, archaea, microalgae and yeasts. The Pseudomonas genus is one of the most diverse and successful bacterial groups described to date, but only eight species isolated from Antarctica have been characterized. Here, we present three potentially novel species isolated on King George Island. The most abundant isolates from four different environments, were genotypically and phenotypically characterized. Multilocus sequence analysis and 16S rRNA gene analysis of a sequence concatenate for six genes (16S, aroE, glnS, gyrB, ileS and rpoD), determined one of the isolates to be a new Pseudomonas mandelii strain, while the other three are good candidates for new Pseudomonas species. Additionally, genotype analyses showed the three candidates to be part of a new subgroup within the Pseudomonas fluorescens complex, together with the Antarctic species Pseudomonas antarctica and Pseudomonas extremaustralis. We propose terming this new subgroup P. antarctica. Likewise, phenotypic analyses using API 20 NE and BIOLOG® corroborated the genotyping results, confirming that all presented isolates form part of the P. fluorescens complex. Pseudomonas genus research on the Antarctic continent is in its infancy. To understand these microorganisms' role in this extreme environment, the characterization and description of new species is vital.


Subject(s)
Phylogeny , Pseudomonas/isolation & purification , Pseudomonas/classification , Phenotype , Pseudomonas/genetics , Soil Microbiology , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Multilocus Sequence Typing , Islands , Genotype , Antarctic Regions
7.
Biol. Res ; 51: 29, 2018. tab, graf
Article in English | LILACS | ID: biblio-983934

ABSTRACT

BACKGROUND: With 29 Km2, the Fildes Peninsula is the largest ice free area in King George Island and probably in Antarctica. The region is house of six permanent bases including the only airport in the South Shetlands, which led to impacts on its original landscape and vegetation. In recognition for the need to protect natural values, an Antarctic Specially Protected Area (ASPA 125) was established in the region. Focused mostly on protecting the fossils, the ASPA also plays a role in protecting the vegetation but so far, the management plan for the area does not contain a list of moss species present there. RESULTS: We provided an updated study and checklist of mosses present in ASPA 125. A key to species identification and photographs of main morphological features are also available in this paper. Also, six new occurrences are reported for Fildes Peninsula. CONCLUSION: Considering the scarce knowledge about specific local floras in Antarctica associated with highly impacted area, of which only a fraction is protected, it is suggested the necessity to invest in detailed sampling studies, as well as in a better understanding of the local floras interactions in Antarctica.


Subject(s)
Environmental Monitoring/methods , Bryophyta/classification , Fossils , Bryophyta/anatomy & histology , Islands , Antarctic Regions
8.
Biol. Res ; 51: 8, 2018. graf
Article in English | LILACS | ID: biblio-888433

ABSTRACT

Abstract Background: Heat stress proteins are implicated in stabilizing and refolding denatured proteins in vertebrates and invertebrates. Members of the Hsp70 gene family comprise the cognate heat shock protein (Hsc70) and inducible heat shock protein (Hsp70). However, the cDNA sequence and the expression of Hsp70 in the Antarctic sea urchin are unknown. Methods: We amplified and cloned a transcript sequence of 1991 bp from the Antarctic sea urchin Sterechinus neumayeri, experimentally exposed to heat stress (5 and 10 °C for 1, 24 and 48 h). RACE-PCR and qPCR were employed to determine Hsp70 gene expression, while western blot and ELISA methods were used to determine protein expression. Results: The sequence obtained from S. neumayeri showed high identity with Hsp70 members. Several Hsp70 family features were identified in the deduced amino acid sequence and they indicate that the isolated Hsp70 is related to the cognate heat shock protein type. The corresponding 70 kDa protein, called Sn-Hsp70, was immune detected in the coelomocytes and the digestive tract of S. neumayeri using a monospecific polyclonal antibody. We showed that S. neumayeri do not respond to acute heat stress by up-regulation of Sn-Hsp70 at transcript and protein level. Furthermore, the Sn-Hsp70 protein expression was not induced in the digestive tract. Conclusions: Our results provide the first molecular evidence that Sn-Hsp70 is expressed constitutively and is noninduced by heat stress in S. neumayeri.


Subject(s)
Animals , Sea Urchins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response/physiology , Phylogeny , Stress, Physiological/physiology , Up-Regulation , Gene Expression Regulation/genetics , HSP70 Heat-Shock Proteins/genetics , Real-Time Polymerase Chain Reaction , Antarctic Regions
9.
Biol. Res ; 51: 37, 2018. tab
Article in English | LILACS | ID: biblio-983949

ABSTRACT

To date, many industrial processes are performed using chemical compounds, which are harmful to nature. An alternative to overcome this problem is biocatalysis, which uses whole cells or enzymes to carry out chemical reactions in an environmentally friendly manner. Enzymes can be used as biocatalyst in food and feed, pharmaceutical, textile, detergent and beverage industries, among others. Since industrial processes require harsh reaction conditions to be performed, these enzymes must possess several characteristics that make them suitable for this purpose. Currently the best option is to use enzymes from extremophilic microorganisms, particularly archaea because of their special characteristics, such as stability to elevated temperatures, extremes of pH, organic solvents, and high ionic strength. Extremozymes, are being used in biotechnological industry and improved through modern technologies, such as protein engineering for best performance. Despite the wide distribution of archaea, exist only few reports about these microorganisms isolated from Antarctica and very little is known about thermophilic or hyperthermophilic archaeal enzymes particularly from Antarctica. This review summarizes current knowledge of archaeal enzymes with biotechnological applications, including two extremozymes from Antarctic archaea with potential industrial use, which are being studied in our laboratory. Both enzymes have been discovered through conventional screening and genome sequencing, respectively.


Subject(s)
Biotechnology/methods , Archaea/enzymology , Enzymes/classification , Enzymes/chemistry , Extreme Environments , Biocatalysis
10.
Biol. Res ; 51: 48, 2018. graf
Article in English | LILACS | ID: biblio-983947

ABSTRACT

BACKGROUND: In field, C. quitensis Is subjected to many abiotic extreme environmental conditions, such as low temperatures, high UV-B, salinity and reduced water potentials, but not metal or metalloid high concentrations in soil, however, other members of Caryophyllaceae family have tolerance to high concentrations of metals, this is the case of Silene genre. In this work, we hypothesize that C. quitensis have the same mechanisms of Silene to tolerate metals, involving accumulation and induction of antioxidant systems, sugar accumulation and the induction of thiols such as phytochelatins to tolerate. RESULTS: The results showing an effective antioxidant defensive machinery involving non-enzymatic antioxidants such as phenolics, GSH and ascorbic acid, in another hand, GSH-related oligomers (phytochelatins) and sugars was induced as a defensive mechanism. CONCLUSIONS: Colobanthus quitensis exhibits certain mechanisms to tolerate copper in vitro demonstrating its plasticity to tolerate several abiotic stress conditions.


Subject(s)
Copper/pharmacology , Caryophyllaceae/metabolism , Sugars/analysis , Phytochelatins/metabolism , Antioxidants/physiology , Photosynthesis , Oxidative Stress/physiology , Caryophyllaceae/chemistry , Sugars/metabolism
11.
An. acad. bras. ciênc ; 89(3): 1737-1743, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-886756

ABSTRACT

ABSTRACT Arbuscular mycorrhizal fungi make up an important ecological niche in ecosystems, and knowledge of their diversity in extreme environments is still incipient. The objective of this work was to evaluate the density and diversity of arbuscular mycorrhizal fungi in the soil of King George Island in the South Shetland Islands archipelago, Antarctica. For that, soil and roots of Deschampsia antarctica were collected at the brazilian research station in Antarctica. The spore density, species diversity and mycorrhizal colonization in the roots were evaluated. There was a low density of spores (27.4 ± 17.7) and root mycorrhizal colonization (6 ± 5.1%), which did not present statistical difference. Four species of arbuscular mycorrhizal fungi were identified, distributed in two genera: three species of the genus Glomus (Glomus sp1, Glomus sp2 and Glomus sp3) and one of the genus Acaulospora, which was identified at species level (Acaulospora mellea). Greater soil diversity was verified with pH 5.9 and phosphorus concentration of 111 mg dm-3, occurring two species of genus Glomus and A. mellea. Based on literature data, this may be the first record of this species of Acaulospora mellea in Antarctic soils, colonizing D. antarctica plants.


Subject(s)
Soil Microbiology , Mycorrhizae/classification , Biodiversity , Antarctic Regions
12.
Biol. Res ; 49: 1-9, 2016. ilus, graf
Article in English | LILACS | ID: lil-774433

ABSTRACT

BACKGROUND: Cryptogamic vegetation dominates the ice-free areas along the Antarctic Peninsula. The two mosses Sanionia uncinata and Polytrichastrum alpinum inhabit soils with contrasting water availability. Sanionia uncinata grows in soil with continuous water supply, while P. alpinum grows in sandy, non-flooded soils. Desiccation and rehydration experiments were carried out to test for differences in the rate of water loss and uptake, with non-structural carbohydrates analysed to test their role in these processes. RESULTS: Individual plants of S. uncinata lost water 60 % faster than P. alpinum; however, clumps of S. uncinata took longer to dry than those of P. alpinum (11 vs. 5 h, respectively). In contrast, rehydration took less than 10 min for both mosses. Total non-structural carbohydrate content was higher in P. alpinum than in S. uncinata, but sugar levels changed more in P. alpinum during desiccation and rehydration (60-50 %) when compared to S. uncinata. We report the presence of galactinol (a precursor of the raffinose family) for the first time in P. alpinum. Galactinol was present at higher amounts than all other non-structural sugars. CONCLUSIONS: Individual plants of S. uncinata were not able to retain water for long periods but by growing and forming carpets, this species can retain water the longest. In contrast individual P. alpinum plants required more time to lose water than S. uncinata, but as moss cushions they suffered desiccation faster than the later. On the other hand, both species rehydrated very quickly. We found that when both mosses lost 50 % of their water, carbohydrates content remained stable and the plants did not accumulate non-structural carbohydrates during the desiccation prosses as usually occurs in vascular plants. The raffinose family oligosaccarides decreased during desiccation, and increased during rehydration, suggesting they function as osmoprotectors.


Subject(s)
Bryopsida/metabolism , Carbohydrate Metabolism/physiology , Carbohydrates/analysis , Water/metabolism , Analysis of Variance , Antarctic Regions , Dehydration , Disaccharides/analysis , Germ Cells, Plant , Time Factors , Water/analysis
13.
Rev. biol. trop ; 63(supl.2): 309-320, Apr.-Jun. 2015. tab, graf
Article in English | LILACS, SaludCR | ID: biblio-958178

ABSTRACT

Abstract In the Antarctic marine environment, the water temperature is usually between 2 and - 1.9 °C. Consequently, some Antarctic species have lost the capacity to adapt to sudden changes in temperature. The study of the immune response in Antarctic sea urchin (Sterechinus neumayeri) could help us understand the future impacts of global warming on endemic animals in the Antarctic Peninsula. In this study, the Antarctic sea urchins were challenged with lipopolysaccharides and Vibrio alginolitycus. The cellular response was evaluated by the number of coelomocytes and phagocytosis. A significant increase was observed in red sphere cells and total coelomocytes in animals exposed to LPS. A significant rise in phagocytosis in animals stimulated by LPS was also evidenced. Moreover, the gene expression of three immune related genes was measured by qPCR, showing a rapid increase in their expression levels. By contrast, these immune genes showed a depression in their expression by a thermal effect at 5 and 10 °C. In addition, during bacterial injection, the oxygen consumption was higher in challenged animals. Our results showed that the immune response in the Antarctic sea urchin may be affected by acute thermal stress and that this immune response has a metabolic cost. Rev. Biol. Trop. 63 (Suppl. 2): 309-320. Epub 2015 June 01.


Resumen En el medio ambiente de la Antártica la temperatura del agua es de entre 2 y - 1.9 °C. Por consecuencia ciertas especies han perdido la capacidad de adaptarse a los cambios repentinos de la temperatura del agua. El estudio de la respuesta inmune del erizo antártico (Sterechinus neumayeri) podría ayudar a comprender los futuros impactos en los animales endémicos del cambio climático en la Península Antártica. En este estudio nosotros hemos evaluado la respuesta inmunitaria de S. neumayeri respecto de estimulaciones con bacterias (Lipopolisacáridos y Vibrio alginolitycus) asi como durante el estrés térmico a 5 y 10 °C. La respuesta del erizo fue evaluada en relación al número de celomocitos circulantes, capacidad fagocítica de estos y por el análisis de la expresión de tres genes inmunitarios. Después de la estimulación con LPS un aumento significativo de células esferoidales rojas, de amebocitos fagocíticos y de celomocitos totales fue observado después de las primeras horas de estimulación, de la misma manera que la capacidad fagocítica. Por otra parte los tres genes inmunes medidos mostraron un aumento significativo de su expresión por qPCR después de la estimulación con LPS. El estrés térmico de 5 °C produjo un aumento de la expresión de estos tres genes inmunitarios, por el contrario a una temperatura más alta (10 °C) se produce la reducción de dos de entre ellos. Adicionalmente un aumento del consumo de oxígeno fue observado durante la estimulación bacteriana. Nuestros resultados muestran que la respuesta inmunitaria en el erizo antártico puede ser afectada por el estrés térmico agudo y que la respuesta inmune en invertebrados antárticos tendría un costo metabólico.


Subject(s)
Animals , Sea Urchins/immunology , Echinodermata/immunology , Lipopolysaccharide Receptors , Antarctic Regions
14.
Rev. biol. trop ; 63(supl.2): 115-120, Apr.-Jun. 2015. graf
Article in English | LILACS, SaludCR | ID: biblio-958162

ABSTRACT

Abstract Studies of biodiversity of echinoderms from South America have increased in recent years. Here we summarize sampling done on three expeditions along the Argentinean coast (35º - 55º S) and near the Antarctic Peninsula. The first campaign, Mejillón II (M-II; 2009), was carried out between 35º - 39º S and covered a depth range between 10 to 140 m. The second was part of the Summer Antarctic Campaign 2011 (CAV-III; 2011) that took place around the Antarctic Peninsula, South Shetland and South Orkney Islands (depth range between 67 to 754 m). The last cruise was the final stretch of the Summer Antarctic Campaign 2011 (CAV-IV; 2011), from 39º - 55º S and between 30 - 140 m depth. As result, 74 stations have been studied, of which 68 had at least one echinoderm specimen. From the total number of stations, the occurrence percentages for each class were Asteroidea (68 %), Echinoidea (64 %), Ophiuroidea (55 %), Holothuroidea (51 %) and Crinoidea (20 %). In the M-II campaign, echinoderms were presented in 94 % of the sampled stations, with Echinoidea most frequent (74 %). In the CAV-III campaign echinoderms were presented in all the stations; Ophiuroidea were found in all stations. The lowest occurrence of echinoderms was found in the CAV-IV campaign (82 %), where Asteroidea was present in the 73 % of the samples, and crinoids were absent. Rev. Biol. Trop. 63 (Suppl. 2): 115-120. Epub 2015 June 01.


Resumen En los últimos años se han incrementado los estudios sobre la biodiversidad de equinodermos de Latinoamérica. En el presente trabajo, se exponen los resultados sobre muestras obtenidas en tres expediciones a lo largo de la costa argentina (35 - 55º S) y cerca de la Península Antártica. La primera campaña analizada, Mejillón II (M-II; 2009), se llevó acabo entre 35º - 39º S cubriendo profundidades entre 10 y 140 m. La segunda, parte de la Campaña Antártica de Verano 2011 (CAV-III; 2011), tuvo lugar en el área de la Península Antártica, Shetland del Sur e islas Orcadas del Sur (profundidad entre 67 hasta 754 m). La última expedición analizada en este trabajo fue el último tramo de la Campaña Antártica de Verano (CAV-IV; 2011) desde 39º - 55º S y entre 30 - 140 m de profundidad. Como resultado, 74 estaciones fueron estudiadas, en las cuales en 68 se encontró al menos un espécimen del Phylum Echinodermata. Considerando todas las estaciones, el porcentaje de encuentro para cada clase fue Asteroidea (68 %), Echinoidea (64 %), Ophiuroidea (55 %), Holothuroidea (51 %) and Crinoidea (20 %). En la campaña M-II, los equinodermos estuvieron presentes en el 94 % de las estaciones muestreadas, siendo Echinoidea el más frecuente (74 %). En relación a la Campaña CAV-III, los equinodermos estuvieron presentes en todas las estaciones muestreadas; Ophiuroidea fue la clase más representativa en número de estaciones (100 %). El valor más bajo de aparición de equinodermos fue encontrado en la campaña CAV-IV (82 %), donde Asteroidea estuvo presente en el 73 % de las muestras, y los crinoideos estuvieron ausentes.


Subject(s)
Animals , Biodiversity , Echinodermata/classification , Argentina , Antarctic Regions
15.
Article in English | IMSEAR | ID: sea-155362

ABSTRACT

Background & objectives: Immune activation and inflammation play critical roles in the stressful environmental conditions like high altitude, extreme cold, etc. Human leukocyte antigen-G (HLA-G) is a non classical major histocompatiblity complex class I (MHC class- I) protein, upregulated in the context of transplantation, malignancy and inflammation. We hypothesized serum HLA-G as a possible stress biomarker and studied levels of soluble form of HLA-G (sHLA-G) in Indian Antarctic expeditioners. Methods: sHLA-G ELISA was performed in the serum of summer (n=27) and winter (n=22) Indian Antarctic expeditioners. The summer expeditioners were evaluated at three different time points, i.e. before leaving India, after one month ship borne journey, and after staying one month at Indian research base, Maitri in Antarctica, while winter expeditioners were evaluated at five different time points, i.e. before leaving India, and in the month of March, May, August and November at Antarctica. Results: one month ship borne journey did not cause any significant change in the sHLA-G level as compared to the baseline level of the summer expeditioners. sHLA-G levels were not changed significantly in the months of March, May, August and November as compared to the baseline level of the winter expeditioners. Interpretation & conclusions: Our results indicated that the extreme conditions of Antarctica did not cause any significant change in the sHLA-G level in both summer and winter expeditioners.

16.
Electron. j. biotechnol ; 17(1): 1-1, Jan. 2014. ilus, tab
Article in English | LILACS | ID: lil-706515

ABSTRACT

Background The increment of resistant strains to commonly used antibiotics in clinical practices places in evidence the urgent need to search for new compounds with antibacterial activity. The adaptations that Antarctic microorganisms have developed, due to the extreme environment that they inhabit, promote them as a potential new source of active compounds for the control of microorganisms causing infections associated with health care. The aim of this study was to evaluate the antibacterial activity of an ethanol extract of the Antarctic bacterium Janthinobacterium sp., strain SMN 33.6, against nosocomial multi-resistant Gram-negative bacteria. Results Inhibitory activity against human Gram-negative bacterial pathogens, with concentrations that varied between 0.5 and 16 µg ml- 1, was demonstrated. Conclusions The ethanolic extract of Janthinobacterium sp. SMN 33.6 possesses antibacterial activity against a chromosomal AmpC beta-lactamase-producing strain of Serratia marcescens, an extended-spectrum beta-lactamase-producing Escherichia coli and also against carbapenemase-producing strains of Acinetobacter baumannii and Pseudomonas aeruginosa. This becomes a potential and interesting biotechnological tool for the control of bacteria with multi-resistance to commonly used antibiotics.


Subject(s)
Oxalobacteraceae/chemistry , Gram-Negative Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Phylogeny , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Bacterial Proteins/metabolism , beta-Lactamases/metabolism , Microbial Sensitivity Tests , Genes, rRNA/genetics , Drug Resistance, Bacterial , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Oxalobacteraceae/genetics , Ethanol/chemistry , Gram-Negative Bacteria/enzymology
17.
Indian J Biochem Biophys ; 2013 Dec; 50(6): 570-756
Article in English | IMSEAR | ID: sea-154217

ABSTRACT

Esterification of lauric acid with n-butanol, catalyzed by immobilized Candida antarctica lipase (CAL) in aqueous-organic biphasic solvent system was studied. Effects of various reaction parameters on esterification were investigated, such as type and amount of solvent, amount of buffer, pH, temperature, speed of agitation, amount of enzyme, butanol and lauric acid. The most suitable reaction conditions for esterification were observed at 50ºC and pH 7.0 using 5000 μmoles of lauric acid, 7000 μmoles of butanol, 0.25 ml phosphate buffer, 1 ml of isooctane as the solvent and 50 mg of immobilized enzyme in the reaction medium at agitation speed of 150 rpm. Maximum esterification of 96.36% was acheived in 600 min of reaction time at n-butanol to lauric acid molar ratio of 1: 0.7. Kinetic study for the esterification of lauric acid with n-butanol using immobilized CAL was carried out and the kinetic constants were estimated by using non-linear regression method. The estimated value of Michaelis kinetic constants for butanol (KmBt) and acid (KmAc) were 451.56 (M) and 4.7 × 10-7(M), respectively and the value of dissociation constant (KBt) of the butanol-lipase complex was 9.41 × 107(M). The estimated constants agreed fairly well with literature data.


Subject(s)
Buffers , Butanols/chemistry , Enzymes, Immobilized/metabolism , Esterification , Fungal Proteins/metabolism , Hydrogen-Ion Concentration , Kinetics , Lauric Acids/chemistry , Lipase/metabolism , Solvents/chemistry , Temperature , Water/chemistry
18.
Rev. peru. biol. (Impr.) ; 19(3)dic. 2012.
Article in English | LILACS-Express | LILACS, LIPECS | ID: biblio-1522285

ABSTRACT

The La Meseta Formation crops out in Seymour/Marambio Island, Weddell Sea, northeast of the Antarctic Peninsula and contains one of the world's most diverse assemblages of Weddellian marine/coastal vertebrates of Early Eocene (Ypresian) age. The La Meseta Formation is composed of poorly consolidated, marine sandstones and siltstones which were deposited in a coastal, deltaic and/or estuarine environment. It includes marine invertebrates and vertebrates as well as terrestrial vertebrates and plants. The highly fossiliferous basal horizon (Cucullaea shell bed, Telm 4 of Sadler 1988) of the Cucullaea I Allomember is a laterally extensive shell bed with sandy matrix. The fish remains, including 35 species from 26 families, of the Ypresian Cucullaea bed represent one of the most abundant and diverse fossil vertebrate faunas yet recorded in southern latitudes. Stratigraphic distribution and phylogenetic relationships of the Weddellian sphenisciforms are consistent with a first radiation of this group in the Early Eocene. The first inquestionable archaeocete from Antarctica is recorded in this unit and is referred to a new taxon


La Formación La Meseta aflora en la Isla Seymour/Marambio, Mar de Weddell, noreste de la Península Antártica y contiene una de las asociaciones de vertebrados costeros/marinos de edad Eoceno temprano (Ypresiano) más diversa que se conoce a nivel mundial. Esta unidad está compuesta por areniscas marinas pobremente consolidadas las cuales fueron depositadas en ambientes costeros, deltaicos y/o estuarinos. Esta incluye invertebrados y vertebrados marinos así como plantas y vertebrados terrestres. El horizonte basal (el banco de Cucullaea, Telm 4) del Alomiembro Cucullaea I es lateralmente extensor y altamente fosilífero. Los restos de peces del banco de Cucullaea (Ypresiano) incluyen 35 especies con 26 familias y representa una de las más abundantes y diversas fauna de vertebrados fósiles registradas en latitudes altas. La distribución estratigráfica y las relaciones filogenéticas de los pingüinos fósiles (Sphenisciformes) son consistentes con la primera radiación de este grupo en el Eoceno temprano. El primer incuestionable Archaeoceti de Antártida es registrado en esta unidad y es referido un nuevo taxón

19.
Electron. j. biotechnol ; 15(4): 8-8, July 2012. ilus, tab
Article in English | LILACS | ID: lil-646958

ABSTRACT

Deschampsia antarctica (DA), the only species in the Gramineae family endemic to the Antarctic territory, is characterized by a combination of high levels of free endogenous phenylpropanoid compounds under normal in situ and in vitro growth conditions. In this article, we describe the design and use of a specific temporary immersion photobioreactor to produce both increased DA biomass and secondary metabolite accumulation by UV-B elicitation during cultivation. Three min-long immersions in an induction medium applied every 4 hrs at 14ºC +/- 1 and 20/4 hrs light/darkness photoperiod increased DA biomass production over previous in vitro reports. Biomass duplication was obtained at day 10.7 of culturing, and maximum total phenolics and antioxidant activity were observed after 14 day of culturing. The addition of UV-B radiation pulses for 0.5 hrs at 6 hrs intervals increased total phenolics and antioxidant activity more than 3- and 1.5- fold, respectively, compared to controls with no UV-B. Significant accumulation of scopoletin, chlorogenic acid, gallic acid and rutin was found in these plantlets. This is the first bioreactor designed to optimize biomass and phenylpropanoid production in DA.


Subject(s)
Phenols/metabolism , Poaceae/radiation effects , Poaceae/metabolism , Bioreactors , Ultraviolet Rays
20.
Braz. j. microbiol ; 42(3): 868-877, July-Sept. 2011. ilus, tab
Article in English | LILACS | ID: lil-607515

ABSTRACT

The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100 percent identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20ºC, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20ºC. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures.


Subject(s)
Amylases , Environmental Microbiology , RNA, Bacterial/analysis , Streptomyces/growth & development , Streptomyces/isolation & purification , beta-Amylase/analysis , Methods , Phylogeny , Methods
SELECTION OF CITATIONS
SEARCH DETAIL