Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Integrative Medicine ; (12): 288-295, 2019.
Article in English | WPRIM | ID: wpr-774250

ABSTRACT

OBJECTIVE@#Kaempferide and 4,2'-dihydroxy-4',5',6'-trimethoxychalcone (DTMC) are two major flavonoids found in Chromolaena odorata Linn. leaf extract. The aim of this study was to elucidate the mechanism by which these two flavonoids exerted their effect on adipogenesis. The inhibitory effect of kaempferide and DTMC on adipocyte differentiation and their mechanisms involving mitotic clonal expansion (MCE) and apoptosis during the early stage of adipogenesis were investigated.@*METHODS@#Confluent 3T3-L1 preadipocytes were induced to differentiate and exposed to the flavonoids during various phases of differentiation. Intracellular lipid accumulation, cell density and expression of the transcription factors peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding proteins α were assessed using AdipoRed, Oil red O and Western blot assays. Effects of both flavonoids on cell proliferation and apoptosis were also determined by carboxyfluorescein diacetate succinimidyl ester and annexin V-fluorescein isothiocyanate/propidium iodide-staining assays, respectively.@*RESULTS@#Kaempferide and DTMC showed significant, concentration-dependent anti-adipogenic activity and effect on cell density in the early phase of adipogenesis. The expression of the transcription factors seemed to be reduced when the treatment was prolonged or in the early phase of adipogenesis. These flavonoids interrupted MCE via inhibition of preadipocyte proliferation and induction of apoptosis. DTMC was nearly three times more potent than kaempferide in inducing apoptosis.@*CONCLUSION@#Kaempferide and DTMC exerted their anti-adipogenic activity through inhibition of MCE, either by suppressing cell proliferation or by inducing apoptosis during the early phase of differentiation.

2.
Biomolecules & Therapeutics ; : 329-336, 2017.
Article in English | WPRIM | ID: wpr-160696

ABSTRACT

Adipogenesis in murine preadipocyte 3T3L-1 has been used as a model system to study anti-obese bioactive molecules. During adipogenesis in 3T3-L1 preadipocytes, we found that capsanthin inhibited adipogenesis (IC₅₀; 2.5 μM) and also showed lipolytic activity in differentiated adipocytes from the preadipocytes (ED₅₀ ; 872 nM). We identified that the pharmacological activity of capsanthin on adipogenesis in 3T3-L1 was mainly due to its adrenoceptor-β2-agonistic activity. In high-fat diet animal model study, capsanthin significantly enhanced spontaneous locomotive activities together with progressive weight-loss. The capsanthin-induced activation of kinetic behavior in mice was associated with the excessive production of ATP initiated by both the enhanced lipolytic activity together with accelerated oxidation of fatty acids due to the adrenoceptor β2-agonistic activity of capsanthin. Capsanthin also dose-dependently increased adiponectin and p-AMPK activity in high fat diet animals, suggesting that capsanthin has both anti-obesity and insulin sensitizing activities.


Subject(s)
Animals , Mice , Adenosine Triphosphate , Adipocytes , Adipogenesis , Adiponectin , Diet, High-Fat , Fatty Acids , Insulin , Mice, Obese , Models, Animal , Weight Gain
3.
Nutrition Research and Practice ; : 192-197, 2011.
Article in English | WPRIM | ID: wpr-35958

ABSTRACT

The dietary intake of whole grains is known to reduce the incidence of chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. To investigate whether there are anti-adipogenic activities in various Korean cereals, we assessed water extracts of nine cereals. The results showed that treatment of 3T3-L1 adipocytes with Sorghum bicolor L. Moench, Setaria italica Beauvois, or Panicum miliaceum L. extract significantly inhibited adipocyte differentiation, as determined by measuring oil red-O staining, triglyceride accumulation, and glycerol 3-phosphate dehydrogenase activity. Among the nine cereals, P. miliaceum L. showed the highest anti-adipogenic activity. The effects of P. miliaceum L. on mRNA expression of peroxisome proliferator-activated receptor-gamma, sterol regulatory element-binding protein 1, and the CCAAT/enhancer binding protein-alpha were evaluated, revealing that the extract significantly decreased the expression of these genes in a dose-dependent manner. Moreover, P. miliaceum L. extract changed the ratio of monounsaturated fatty acids to saturated fatty acids in adipocytes, which is related to biological activity and cell characteristics. These results suggest that some cereals efficiently suppress adipogenesis in 3T3-L1 adipocytes. In particular, the effect of P. miliaceum L. on adipocyte differentiation is associated with the downregulation of adipogenic genes and fatty acid accumulation in adipocytes.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Cardiovascular Diseases , Edible Grain , Chronic Disease , Down-Regulation , Fatty Acids , Fatty Acids, Monounsaturated , Glycerol , Glycerophosphates , Incidence , Obesity , Oxidoreductases , Panicum , Peroxisomes , RNA, Messenger , Setaria Plant , Sorghum , Sterol Regulatory Element Binding Protein 1 , Transcription Factors , Water
SELECTION OF CITATIONS
SEARCH DETAIL