Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Chinese Journal of Biotechnology ; (12): 4358-4375, 2023.
Article in Chinese | WPRIM | ID: wpr-1008030

ABSTRACT

Yeast surface display (YSD) is a technology that fuses the exogenous target protein gene sequence with a specific vector gene sequence, followed by introduction into yeast cells. Subsequently, the target protein is expressed and localized on the yeast cell surface by using the intracellular protein transport mechanism of yeast cells, whereas the most widely used YSD system is the α-agglutinin expression system. Yeast cells possess the eukaryotic post-translational modification mechanism, which helps the target protein fold correctly. This mechanism could be used to display various eukaryotic proteins, including antibodies, receptors, enzymes, and antigenic peptides. YSD has become a powerful protein engineering tool in biotechnology and biomedicine, and has been used to improve a broad range of protein properties including affinity, specificity, enzymatic function, and stability. This review summarized recent advances in the application of YSD technology from the aspects of library construction and screening, antibody engineering, protein engineering, enzyme engineering and vaccine development.


Subject(s)
Saccharomyces cerevisiae/metabolism , Protein Engineering , Biotechnology , Antibodies/metabolism , Amino Acid Sequence
2.
Chinese Journal of Biotechnology ; (12): 1174-1183, 2019.
Article in Chinese | WPRIM | ID: wpr-771811

ABSTRACT

With the rapid development of antibody genetic engineering, bispecific antibody technology has been advanced. They are capable of binding two or more different epitopes simultaneously, thus offering specific advantages over natural monoclonal antibodies in immunotherapy. Bispecific antibodies have been successfully used in cancer therapy (e.g. melanoma, Hodgkin's lymphoma, liver cancer, and stomach cancer) and inflammation therapy (e.g. rheumatoid arthritis, psoriasis and Crohn's disease), but are still in their early stage for viral immunotherapy. In this study, we reviewed the research progress of bispecific antibodies for immunotherapy of virus infections, especially those with good effects in vivo and in vitro, to provide references for the research and development of bispecific antibodies for antivirus treatment.


Subject(s)
Humans , Antibodies, Bispecific , Therapeutic Uses , Antibodies, Monoclonal , Epitopes , Immunotherapy , Virus Diseases
3.
Acta Pharmaceutica Sinica B ; (6): 960-972, 2019.
Article in English | WPRIM | ID: wpr-774930

ABSTRACT

Monoclonal antibodies (mAbs) are widely used in many fields due to their high specificity and ability to recognize a broad range of antigens. IL-17A can induce a rapid inflammatory response both alone and synergistically with other proinflammatory cytokines. Accumulating evidence suggests that therapeutic intervention of IL-17A signaling offers an attractive treatment option for autoimmune diseases and cancer. Here, we present a combinatorial approach for optimizing the affinity and thermostability of a novel anti-hIL-17A antibody. From a large naïve phage-displayed library, we isolated the anti-IL-17A mAb 7H9 that can neutralize the effects of recombinant human IL-17A. However, the modest neutralization potency and poor thermostability limit its therapeutic applications. affinity optimization was then used to generate 8D3 by using yeast-displayed random mutagenesis libraries. This resulted in four key amino acid changes and provided an approximately 15-fold potency increase in a cell-based neutralization assay. Complementarity-determining regions (CDRs) of 8D3 were further grafted onto the stable framework of the huFv 4D5 to improve thermostability. The resulting hybrid antibody 9NT/S has superior stabilization and affinities beyond its original antibody. Human fibrosarcoma cell-based assays and analyses in mice indicated that the anti-IL-17A antibody 9NT/S efficiently inhibited the secretion of IL-17A-induced proinflammatory cytokines. Therefore, this lead anti-IL-17A mAb might be used as a potential best-in-class candidate for treating IL-17A related diseases.

4.
Chinese Journal of Biotechnology ; (12): 183-194, 2019.
Article in Chinese | WPRIM | ID: wpr-771388

ABSTRACT

Monoclonal antibodies have become the main type of antibody drug because of their high specificity and strong affinity to antigen. However, with the intensive study of the natural monoclonal antibody, many defects have faced, such as the limit times of binding to antigen, the unanticipated antibody clearance and antigen accumulation. Therefore, studies are no longer limited to the natural antibody screening, but rather to improve the efficiency of antibody drugs by engineering. In recent years, the bottlenecks in the development of conventional antibody have been solved effectively since the discovery of a novel recycling antibody. Recycling antibody binds to an antigen in plasma and dissociates from the antigen in endosome, thus maximizing the use of antibody and reducing antigen-mediated antibody clearance and antibody-mediated antigen accumulation. In addition, recycling antibodies can enhance the affinity with Fc receptors through further Fc modification. This paper reviews the research progress of circulating antibodies, including its characteristics, transformation methods and prospects.


Subject(s)
Antibodies, Monoclonal , Allergy and Immunology , Antigens , Endosomes , Protein Binding , Receptors, Fc
5.
Acta Pharmaceutica Sinica ; (12): 1811-1819, 2017.
Article in Chinese | WPRIM | ID: wpr-779793

ABSTRACT

With the development of antibody manufacturing technology and improvement in new drug research and development (R&D) capabilities in domestic industry, more and more innovative antibody-based drugs were registered at the Investigational New Drug (IND). This type of drugs could be divided into three categories:new sequence antibodies (biobetter or new target antibodies), bispecific antibodies (or antibody cocktails), and antibody drug conjugates. Comparing with biosimilar antibodies, the innovative antibodies R&D was characterized by some significant features including "innovation", "clinical phase-appropriate" and "progressing". The minimum requirements of Chemical, Manufacturing and Control (CMC) content for innovative antibodies were obviously different from biosimilar antibodies. Here, the recent progress of antibody engineering and IND date of innovative antibodies in domestic are summarized. The general regulatory requirement and special considerations for representative innovative antibodies were proposed. Some common problems concerning innovative antibodies R&D are discussed.

6.
Rev. ing. bioméd ; 4(7): 39-51, ene.- jun. 2010. ilus, tab
Article in English | LILACS | ID: lil-590326

ABSTRACT

Since genetic engineering of humanized murine monoclonal antibodies was first demonstrated over two decades ago, antibody engineering technologies have evolved based upon an increasing understanding of the mechanisms involved in antibody generation in vivo, and a constant search for alternative routes to evolve and exploit the characteristics of antibodies. As a result, antibody engineers have devised innovative strategies for the rapid evolution and selection of antibodies and novel antibody designs (i.e., antibody fragments). Phage display, cell display and ribosome display technologies, which comprise the core of the currently available technologies for the discovery and preparation of such antibodies, are reviewed herein. This article intends to communicate the state-of-the-art technology available for the engineering of antibodies to a general readership interested in this important field. Therefore, important immunology concepts are introduced before detailed descriptions of the three antibody engineering technologies are presented in later sections. A comparison of these methodologies suggests that despite the predominance of phage display for the engineering of antibody fragments in the past 20 years, cell display and ribosome display will likely gain importance in the selection and discovery of the antibody fragments in the future. Finally, these technologies are likely to play an important role in the production of the next generation of antibody-based therapeutics.


Las tecnologías para la ingeniería de anticuerpos han evolucionado durante las últimas dos décadas, desde la demostración de la posibilidad de humanizar anticuerpos monoclonales de ratón mediante ingeniería genética, apoyadas en el creciente entendimiento de los mecanismos involucrados en la generación de anticuerpos in vivo, y en una búsqueda constante de rutas alternativas para evolucionar y explotar sus características. Es así como los ingenieros de anticuerpos han desarrollado estrategias innovadoras para la evolución y selección de anticuerpos y de novedosos diseños de anticuerpos conocidos como fragmentos de anticuerpos. Esta revisión se enfoca en tres tecnologías que comprenden el núcleo de las tecnologías actualmente disponibles para el descubrimiento y preparación de tales anticuerpos: la presentación en fagos, la presentación en células, y la presentación en ribosomas. Este artículo busca presentar el estado del arte de estas tecnologías a un grupo general de lectores interesados en este campo, por lo que inicialmente se introducen importantes conceptos de inmunología requeridos para comprender en detalle las tecnologías discutidas. Una comparación de estas metodologías para la ingeniería de anticuerpos sugiere que a pesar del dominio de las tecnologías basadas en la presentación en fagos durante los últimos 20 años, en los próximos años la presentación en células y la presentación en ribosomas probablemente ganarán importancia para la selección y descubrimiento de fragmentos de anticuerpos. Finalmente, es probable que estas tecnologías jueguen un papel importante en la producción de la siguiente generación de terapéuticos basados en anticuerpos.


Subject(s)
Immunoglobulin Fragments/biosynthesis , Immunoglobulin Fragments/genetics , Immunoglobulin Fragments/immunology , Protein Engineering/trends
7.
Rev. ing. bioméd ; 4(7): 74-86, ene.- jun. 2010. graf
Article in English | LILACS | ID: biblio-960906

ABSTRACT

Since genetic engineering of humanized murine monoclonal antibodies was first demonstrated over two decades ago, antibody engineering technologies have evolved based upon an increasing understanding of the mechanisms involved in antibody generation in vivo, and a constant search for alternative routes to evolve and exploit the characteristics of antibodies. As a result, antibody engineers have devised innovative strategies for the rapid evolution and selection of antibodies and novel antibody designs (i.e., antibody fragments). Phage display, cell display and ribosome display technologies, which comprise the core of the currently available technologies for the discovery and preparation of such antibodies, are reviewed herein. This article intends to communicate the state-of-the-art technology available for the engineering of antibodies to a general readership interested in this important field. Therefore, important immunology concepts are introduced before detailed descriptions of the three antibody engineering technologies are presented in later sections. A comparison of these methodologies suggests that despite the predominance of phage display for the engineering of antibody fragments in the past 20 years, cell display and ribosome display will likely gain importance in the selection and discovery of the antibody fragments in the future. Finally, these technologies are likely to play an important role in the production of the next generation of antibody-based therapeutics.


Las tecnologías para la ingeniería de anticuerpos han evolucionado durante las últimas dos décadas, desde la demostración de la posibilidad de humanizar anticuerpos monoclonales de ratón mediante ingeniería genética, apoyadas en el creciente entendimiento de los mecanismos involucrados en la generación de anticuerpos in vivo, y en una búsqueda constante de rutas alternativas para evolucionar y explotar sus características. Es así como los ingenieros de anticuerpos han desarrollado estrategias innovadoras para la evolución y selección de anticuerpos y de novedosos diseños de anticuerpos conocidos como fragmentos de anticuerpos. Esta revisión se enfoca en tres tecnologías que comprenden el núcleo de las tecnologías actualmente disponibles para el descubrimiento y preparación de tales anticuerpos: la presentación en fagos, la presentación en células, y la presentación en ribosomas. Este artículo busca presentar el estado del arte de estas tecnologías a un grupo general de lectores interesados en este campo, por lo que inicialmente se introducen importantes conceptos de inmunología requeridos para comprender en detalle las tecnologías discutidas. Una comparación de estas metodologías para la ingeniería de anticuerpos sugiere que a pesar del dominio de las tecnologías basadas en la presentación en fagos durante los últimos 20 años, en los próximos años la presentación en células y la presentación en ribosomas probablemente ganarán importancia para la selección y descubrimiento de fragmentos de anticuerpos. Finalmente, es probable que estas tecnologías jueguen un papel importante en la producción de la siguiente generación de terapéuticos basados en anticuerpos.

SELECTION OF CITATIONS
SEARCH DETAIL