Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 463
Filter
1.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 130-138, 2024.
Article in Chinese | WPRIM | ID: wpr-1014553

ABSTRACT

AIM: To explore the protective effect of astragalus glycyrrhiza decoction (AGD) on arsenic trioxide (ATO)-induced QT interval prolongation and its mechanism based on metabonomics. METHODS: The model of ATO-induced QT interval prolongation in rats was established, and ECG, blood routine, and metabonomics were detected, and the key targets were collected combined with network pharmacology. The possible candidate genes and pathways for the protective effect of AGD were screened by GO and KEGG enrichment analysis and then verified by experiments in vitro. RESULTS: AGD could significantly alleviate the ATO-induced QT interval of SD rats. GO enrichment analysis was mainly related to inflammatory response, reactive oxygen species, oxidative stress, inner cell vesicles, folds, inner cell vesicles, SMAD binding, R-SMAD binding, and signal receptor activator activity. KEGG analysis showed that it was mainly concentrated in the PI3K-Akt signal pathway, lipid and arteriosclerosis, FOXO signal pathway, TNF signal pathway, HIF-1, and other signal pathways. Through the H9c2 cell model in vitro, it was verified that AGD could reverse the expression of SIRT1 and FOXO1 proteins. CONCLUSION: AGD may improve the ATO-induced QT interval prolongation and reduce the cardiotoxicity of ATO by regulating the SIRT1 / FOXO1 signal pathway.

2.
China Pharmacy ; (12): 712-717, 2024.
Article in Chinese | WPRIM | ID: wpr-1013107

ABSTRACT

OBJECTIVE To investigate the effect and mechanism of Astragalus polysaccharide (APS) on peritoneal fibrosis and angiogenesis in rats with peritoneal dialysis (PD). METHODS Rats were randomly divided into normal control group (Control group), model group (PD group), 70 mg/kg APS group (APS-L group), 140 mg/kg APS group (APS-H group), and 140 mg/kg APS+40 mg/kg hypoxia-inducible factor-1α (HIF-1α) agonist DMOG group (APS-H+DMOG group), with 12 rats in each group. PD rat models were constructed in the last four groups of rats. Administration groups were given APS intragastrically and DMOG intraperitoneally. Control group and PD group were given constant volume of normal saline intragastrically, once a day, for 4 consecutive weeks. After the last medication, the peritoneal ultrafiltration (UF), mass transfer of glucose (MTG), the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) were detected in rats; peritoneal histomorphology and peritoneal fibrosis (peritoneal thickness and proportion of collagen fiber deposition) were observed; the microvascular density and the expression levels of α-smooth muscle actin (α-SMA), laminin (LN), HIF-1α and vascular endothelial growth factor (VEGF) proteins were detected in peritoneal tissue of rats. RESULTS Compared with Control group, the mesothelium of rats in the PD group was loosely arranged and shed, inflammatory cells infiltrated, the peritoneal thickness and proportion of collagen fiber deposition were increased significantly (P<0.05). The levels of MTG, Scr and BUN in serum, microvascular density and the expressions of α-SMA, LN, HIF-1α and VEGF proteins were significantly increased, while the level of UF was significantly decreased (P< 0.05); compared with PD group, the levels of above indexes were significantly reversed in APS-L and APS-H groups (P<0.05), and the improvement of APS-H group was better than APS-L group (P<0.05). Compared with APS-H group, the levels of above indexes in APS-H+DMOG group were all reversed (P<0.05). CONCLUSIONS APS inhibits peritoneal fibrosis and angioge-nesis in PD rats by inhibiting HIF-1α/VEGF signaling pathway.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 21-28, 2024.
Article in Chinese | WPRIM | ID: wpr-1005249

ABSTRACT

ObjectiveTo establish a method based on specific polymerase chain reaction (PCR) that can accurately and rapidly identify Astragalus membranaceus var. mongholicus (AMM) seeds and A. membranaceus (AM) seeds. MethodThe Chloroplast Genome Information Resource (CGIR) and IdenDSS were used to obtain the characteristic DNA fragments of AMM and AM, and the specific single nucleotide polymorphism (SNP) sites of AMM and AM were screened out, on the basis of which the specific primers MG-F/MG-R of AMM and MJ-F/MJ-R of AM were designed. The specific PCR method for identifying AMM and AM was established and optimized, and the specificity and applicability of the method were investigated. ResultThe specific PCR conditions for the identification of AMM were primers MG-F/MG-R, annealing at 62 ℃, and 28 cycles. After PCR amplification and gel electrophoresis, the specific band appeared at about 220 bp, with no band for the seeds of AM or adulterants. The specific PCR conditions for identifying the AM were primers MJ-F/MJ-R, annealing at 58 ℃, and 28 cycles. After PCR amplification and gel electrophoresis, the band appeared at about 150 bp, with no band of AMM or adulterants. ConclusionThe specific PCR method established in this study can accurately and quickly identify the seeds of AMM and AM, which provides a basis for the classification and accurate identification of Astragalus seeds and adulterants.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 208-217, 2024.
Article in Chinese | WPRIM | ID: wpr-1003783

ABSTRACT

Heart failure is one of the main cardiovascular system diseases at present, and it is a clinical syndrome caused by changes in cardiac structure and function, resulting in impaired ejection function or ventricular filling. Therefore, heart failure has become the most important cardiovascular disease in the 21st century. In recent years, the incidence of heart failure is increasing, and the survival rate of patients with heart failure is very low. Traditional Chinese medicine has rich experience in preventing and treating heart failure. With the modernization of traditional Chinese medicine, more and more attention has been paid to the research, development, and application of active ingredients in traditional Chinese medicine. Traditional Chinese medicine has unique advantages in improving the heart function of patients with heart failure by treating multiple targets and multiple pathways through syndrome differentiation. Astragalus membranacus, a traditional Chinese medicine, is a kind of medicine that benefits Qi and blood circulation and removes evil spirits. It has the functions of improving myocardial energy metabolism and hemodynamics, protecting myocardial muscle, and promoting angiogenesis. Astragalus membranaceus is often used to treat patients with heart failure, yielding remarkable results. In recent years, it has been found that astragaloside, Astragalus polysaccharide, quercetin, calyx isoflavones, and other main active ingredients of Astragalus membranacus can improve cardiac function and treat heart failure by inhibiting inflammatory response, myocardial apoptosis, and myocardial fibrosis. This paper reviewed the research progress of the action and mechanism of the active ingredients of Astragalus membranacus in the treatment of heart failure by studying relevant literature, with a view to providing a reference for its further research, development, and application in the prevention and treatment of heart failure.

5.
Acta Pharmaceutica Sinica ; (12): 1971-1980, 2023.
Article in Chinese | WPRIM | ID: wpr-978672

ABSTRACT

italic>Astragalus is a commonly used Chinese medicinal material in traditional Chinese medicine (TCM), and with the increase of planting area in recent years, the damage of Astragalus root rot has worsened year by year, which seriously affecting its quality and yield. Fusarium oxysporum is one of the main pathogens causing root rot in astragalus. In this study, UPLC-Q-TOF-MS based metabolomic approach combined with multivariate statistical analysis were used to analyze the metabolite changes of Astragalus in response to F. oxysporum infection. The results showed that 62 metabolites in the Astragalus had significant changes after inoculation of F. oxysporum. Polar metabolites included 40 flavonoids, 8 saponins, 2 nucleosides, 1 vitamin, 1 organic acid, 1 amino acid; while lipid metabolites included 3 fatty acids, 1 diradylglycerols, 2 lysophosphatidylcholine, 1 lysophosphatidylglycerol, 1 phosphatidylinositol, 1 sterol lipid. Among these differential metabolites, the relative content of flavonoids, vitamin B2, tryptophan and salicylic acid were increased, while the relative content of saponins were decreased. Correlation analysis showed that the flavonoids were positively correlated with each other, and positively correlated with most lipids, but negatively correlated with most saponins. In addition, studies have shown that F. oxysporum infection is not an influencing factor for the generation of malonyl substitution of flavonoid. This study elucidates the effect of F. oxysporum infection on Astragalus from the perspective of plant metabolism, which provides a basis for exploring the interaction mechanism between the Astragalus and F. oxysporum and further promoting molecular breeding.

6.
Acta Pharmaceutica Sinica ; (12): 1859-1866, 2023.
Article in Chinese | WPRIM | ID: wpr-978659

ABSTRACT

Root rot severely restricts the sustainable development of Astragalus membranaceus var. mongholicus (AMM) industry. Resistance breeding is an economical and environmentally safe way to manage the disease and its key lies in the obtaining of resistance indicators. This study aimed to quickly and accurately screen the resistance-related (RR) metabolites so as to provide reference for the screening of indicators of AMM breeding for resistance. LC-MS-based targeted metabolomics and real-time quantitative PCR technology were employed, in combination with multivariate statistical analysis, in analyzing the dynamic changes of phenylpropanoid metabolites in AMM in response to root rot pathogen Fusarium solani (FS) infection and identifying the differential metabolites. The LC-MS method established showed high sensitivity; each metabolite had a good linear relationship (R2 ≥ 0.968 9) in the corresponding linear range of the respective standard curve; the recoveries and the relative standard deviations (RSDs) (n = 6) ranged from 70% to 107% and from 1.2% to 9.9%, respectively. Obvious disturbances were observed in the changes of the targeted metabolites in AMM infected by FS. These metabolites, compared with the mock-inoculated (CK) group, showed different up or down regulation with time series. Calycosin-7-O-β-D-glucoside, ononin, calycosin and formononetin were identified as differential metabolites, and they all belong to flavonoids. The first three compounds were significantly negatively correlated (r ≤ -0.97, P < 0.05) with the content of FS in the root of AMM. As potential RR metabolites, they are helpful in obtaining promising resistance indicators for AMM against FS infection.

7.
Acta Pharmaceutica Sinica B ; (6): 271-283, 2023.
Article in English | WPRIM | ID: wpr-971710

ABSTRACT

Astragalosides are the main active constituents of traditional Chinese medicine Huang-Qi, of which cycloastragenol-type glycosides are the most typical and major bioactive compounds. This kind of compounds exhibit various biological functions including cardiovascular protective, neuroprotective, etc. Owing to the limitations of natural sources and the difficulties encountered in chemical synthesis, re-engineering of biosynthetic machinery will offer an alternative and promising approach to producing astragalosides. However, the biosynthetic pathway for astragalosides remains elusive due to their complex structures and numerous reaction types and steps. Herein, guided by transcriptome and phylogenetic analyses, a cycloartenol synthase and four glycosyltransferases catalyzing the committed steps in the biosynthesis of such bioactive astragalosides were functionally characterized from Astragalus membranaceus. AmCAS1, the first reported cycloartenol synthase from Astragalus genus, is capable of catalyzing the formation of cycloartenol; AmUGT15, AmUGT14, AmUGT13, and AmUGT7 are four glycosyltransferases biochemically characterized to catalyze 3-O-xylosylation, 3-O-glucosylation, 25-O-glucosylation/O-xylosylation and 2'-O-glucosylation of cycloastragenol glycosides, respectively. These findings not only clarified the crucial enzymes for the biosynthesis and the molecular basis for the structural diversity of astragalosides in Astragalus plants, also paved the way for further completely deciphering the biosynthetic pathway and constructing an artificial pathway for their efficient production.

8.
Chinese journal of integrative medicine ; (12): 89-95, 2023.
Article in English | WPRIM | ID: wpr-971322

ABSTRACT

The primary chemical components of Astragalus membranaceus include polysaccharides, saponins, flavonoids, and amino acids. Recent studies have shown that Astragalus membranaceus has multiple functions, including improving immune function and exerting antioxidative, anti-radiation, anti-tumor, antibacterial, antiviral, and hormone-like effects. Astragalus membranaceus and its extracts are widely used in clinical practice because they have obvious therapeutic effects against various autoimmune diseases and relatively less adverse reaction. Multiple sclerosis (MS) is an autoimmune disease of central nervous system (CNS), which mainly caused by immune disorder that leads to inflammatory demyelination, inflammatory cell infiltration, and axonal degeneration in the CNS. In this review, the authors analyzed the clinical manifestations of MS and experimental autoimmune encephalomyelitis (EAE) and focused on the efficacy of Astragalus membranaceus and its chemical components in the treatment of MS/EAE.


Subject(s)
Animals , Humans , Astragalus propinquus/chemistry , Multiple Sclerosis/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Drugs, Chinese Herbal/chemistry , Polysaccharides
9.
China Journal of Chinese Materia Medica ; (24): 6600-6612, 2023.
Article in Chinese | WPRIM | ID: wpr-1008859

ABSTRACT

This study aimed to provide data support for resource utilization of the stems and leaves of Astragalus membranaceus var. mongholicus(SLAM) by analyzing and evaluating the chemical constituents. The crude protein, crude fiber, and soluble saccharide of SLAM were analyzed by Kjeldahl method, filtration method, and UV-Vis spectrophotometry, respectively. The nucleosides, amino acids, flavonoids, and saponins of SLAM were analyzed by ultraperformance liquid chromatography-triple quadrupole mass spectrometry(UPLC-TQ-MS). Combined with principal component analysis(PCA), the quality difference of resource components of SLAM was comprehensively evaluated. The results showed that the average content of crude protein, crude fiber, total polysaccharide, and redu-cing sugar in SLAM was 5.11%, 30.33%, 11.03 mg·g~(-1), and 31.90 mg·g~(-1), respectively. Six nucleosides, 15 amino acids, 22 flavonoids, and one saponin were detected, with an average content of 1.49 mg·g~(-1), 6.00 mg·g~(-1), 1.86 mg·g~(-1), and 35.67 μg·g~(-1), respectively. The content of various types of chemical components in SLAM differed greatly in different harvesting periods and growing years. The results of PCA showed that the quality of SLAM produced in Ningxia was superior. The results can provide references for the utilization of SLAM.


Subject(s)
Astragalus propinquus/chemistry , Gas Chromatography-Mass Spectrometry , Flavonoids/analysis , Plant Leaves/chemistry , Amino Acids , Saponins/analysis
10.
China Journal of Chinese Materia Medica ; (24): 6378-6386, 2023.
Article in Chinese | WPRIM | ID: wpr-1008836

ABSTRACT

This paper aims to investigate the protective effect and mechanism of Astragalus membranaceus and Angelica sinensis before and after compatibility against triptolide(TP)-induced hepatotoxicity. The experiment was divided into a blank group, model group, Astragalus membranaceus group, Angelica sinensis group, and compatibility groups with Astragalus membranaceus/Angelica sinensis ratio of 1∶1, 2∶1, and 5∶1. TP-induced hepatotoxicity model was established, and corresponding drug intervention was carried out. The levels of alanine transaminase(ALT), aspartate transaminase(AST), and alkaline phosphatase(ALP) in serum were detected. Pathological injuries of livers were detected by hematoxylin-eosin(HE) staining. The levels of malondialdehyde(MDA), superoxide dismutase(SOD), glutathione peroxidase(GSH-Px), and reduced glutathione(GSH) in the liver were measured. Wes-tern blot method was used to detect the expression of nuclear factor erythroid 2-related factor 2(Nrf2), Kelch-like ECH-associated protein 1(Keap1), peroxisome proliferator-activated receptor gamma, coactivator-1 alpha(PGC-1α), heme oxygenase-1(HO-1), and NAD(P)H quinone dehydrogenase 1(NQO1) in livers. Immunofluorescence was used to detect the expression of Nrf2 and PGC-1α in livers. The results indicated that Astragalus membranaceus/Angelica sinensis ratio of 2∶1 and 5∶1 could significantly reduce the levels of serum AST, ALT, and ALP, improve the pathological damage of liver tissue, increase the levels of GSH and GSH-Px, and reduce the content of MDA in liver tissue. Astragalus membranaceus/Angelica sinensis ratio of 1∶1 and 2∶1 could significantly improve the level of SOD. Astragalus membranaceus and Angelica sinensis before and after compatibility significantly increased the protein expression of HO-1 and NQO1, improved the protein expression of Nrf2 and PGC-1α, and decreased the protein expression of Keap1 in liver tissue. The above results confirmed that the compatibility of Astragalus membranaceus and Angelica sinensis had antioxidant effects by re-gulating Keap1/Nrf2/PGC-1α, and the Astragalus membranaceus/Angelica sinensis ratio of 2∶1 and 5∶1 had stronger antioxidant effect and significantly reduced TP-induced hepatoto-xicity.


Subject(s)
Humans , Astragalus propinquus , Angelica sinensis , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Superoxide Dismutase/metabolism , Oxidative Stress , Diterpenes , Epoxy Compounds , Phenanthrenes
11.
Journal of Zhejiang University. Science. B ; (12): 650-662, 2023.
Article in English | WPRIM | ID: wpr-982405

ABSTRACT

The syndrome of dampness stagnancy due to spleen deficiency (DSSD) is relatively common globally. Although the pathogenesis of DSSD remains unclear, evidence has suggested that the gut microbiota might play a significant role. Radix Astragali, used as both medicine and food, exerts the effects of tonifying spleen and qi. Astragalus polysaccharide (APS) comprises a macromolecule substance extracted from the dried root of Radix Astragali, which has many pharmacological functions. However, whether APS mitigates the immune disorders underlying the DSSD syndrome via regulating gut microbiota and the relevant mechanism remains unknown. Here, we used DSSD rats induced by high-fat and low-protein (HFLP) diet plus exhaustive swimming, and found that APS of moderate molecular weight increased the body weight gain and immune organ indexes, decreased the levels of interleukin-1β (IL-1β), IL-6, and endotoxin, and suppressed the Toll-like receptor 4/nuclear factor-‍κB (TLR4/NF-‍κB) pathway. Moreover, a total of 27 critical genera were significantly enriched according to the linear discriminant analysis effect size (LEfSe). APS increased the diversity of the gut microbiota and changed its composition, such as reducing the relative abundance of Pseudoflavonifractor and Paraprevotella, and increasing that of Parasutterella, Parabacteroides, Clostridium XIVb, Oscillibacter, Butyricicoccus, and Dorea. APS also elevated the contents of short-chain fatty acids (SCFAs). Furthermore, the correlation analysis indicated that 12 critical bacteria were related to the body weight gain and immune organ indexes. In general, our study demonstrated that APS ameliorated the immune disorders in DSSD rats via modulating their gut microbiota, especially for some bacteria involving immune and inflammatory response and SCFA production, as well as the TLR4/NF-κB pathway. This study provides an insight into the function of APS as a unique potential prebiotic through exerting systemic activities in treating DSSD.


Subject(s)
Rats , Animals , NF-kappa B/metabolism , Spleen , Gastrointestinal Microbiome , Toll-Like Receptor 4 , Polysaccharides/pharmacology , Astragalus Plant/metabolism , Immune System Diseases/drug therapy , Body Weight
12.
Chinese journal of integrative medicine ; (12): 617-625, 2023.
Article in English | WPRIM | ID: wpr-982270

ABSTRACT

OBJECTIVE@#To investigate whether astragalus polysaccharides (APS) combined with berberine (BBR) can reduce high-fat diet (HFD)-induced obesity in mice.@*METHODS@#Except for normal mice, 32 HFD-induced obese mice were randomized into HFD, APS (1,000 mg/kg APS), BBR (200 mg/kg BBR), and APS plus BBR (1,000 mg/kg APS plus 200 mg/kg BBR) groups, respectively. After 6-week treatment (once daily by gavage), the obesity phenotype and pharmacodynamic effects were evaluated by histopathological examination of epididymal fat, liver, and colon using hematoxylin-eosin staining and serum biochemical analyses by an automated chemistry analyzer. The feces were collected at the 12 th week, and taxonomic and functional profiles of gut microbiota were analyzed by 16S ribosomal ribonucleic acid (16S rRNA) sequencing.@*RESULTS@#Compared with HFD group, the average body weight of APS plus BBR group was decreased (P<0.01), accompanied with the reduced fat accumulation, enhanced colonic integrity, insulin sensitivity and glucose homeostasis (P<0.05 or P<0.01). Importantly, APS combined with BBR treatment was more effective than APS or BBR alone in improving HFD-induced insulin resistance (P<0.05 or P<0.01). 16S rRNA sequence-based analysis of fecal samples demonstrated that APS combined with BBR treatment exhibited a better impact on HFD-induced gut microbiota dysbiosis, exclusively via the enriched abundances of Bacteroides, which corresponded to the large increase of predicted bacterial genes involved in carbohydrate metabolism.@*CONCLUSION@#APS combined with BBR may synergistically reduce obesity and modulate the gut microbiota in HFD-fed mice.


Subject(s)
Mice , Animals , Diet, High-Fat , Berberine/therapeutic use , Mice, Obese , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome , Obesity/drug therapy , Insulin Resistance , Mice, Inbred C57BL
13.
China Journal of Chinese Materia Medica ; (24): 4722-4730, 2023.
Article in Chinese | WPRIM | ID: wpr-1008639

ABSTRACT

This study aims to investigate the regulatory effects of Astragalus polysaccharide(APS) and APS combined with 5-fluorouracil(5-FU) on indoleamine-2,3-dioxygenase(IDO1) in the colon tumor microenvironment. Sixty Balb/c mice were randomized into a blank group, a model group, an APS group, an APS + 5-FU group, an APS + low-dose 5-FU group, and a 5-FU group. A tumor model was established by subcutaneous transplantation with CT-26 mouse colon cancer cells in other groups except the blank group. After successful modeling, each group was treated with corresponding drugs for 7 days. The general condition, body weight, and tumor volume of the mice were observed and measured daily during the treatment period. The mice were sacrificed at the end of treatment, and the tumor suppression rate and spleen index of the mice were calculated. Western blot and fluorescence quantitative PCR were employed to determine the protein and mRNA levels, respectively, of IDO1 in the tumor tissue of mice. High performance liquid chromatography was employed to measure the levels of tryptophan(Trp) and kynurenine(Kyn) in the tumor tissue of mice. Hematoxylin-eosin(HE) staining was performed to observe the histological changes of the tumor tissue, and immunohistochemistry to detect the changes of CD4 and CD8 expression in the tumor tissue. Compared with that in the model group, the tumor volume of mice in each treatment group significantly reduced. The body weights of mice in APS + 5-FU group and 5-FU group significantly reduced from day 4 to day 7 of treatment. In addition, the APS + 5-FU group and 5-FU group showed significantly decreased spleen index. The protein and mRNA levels of IDO1 were significantly down-regulated in the APS, APS + 5-FU, and APS + low-dose 5-FU groups. The drug interventions significantly increased the Trp content and decreased the Kyn content. The APS + 5-FU group showed significantly reduced infiltration of CD4~+ T lymphocytes and increased infiltration of CD8~+ T lymphocytes. APS inhibited the expression of IDO1 in the colon tumor microenvironment to increase CD8~+ T lymphocyte infiltration, and the combination of APS with 5-FU demonstrated better effect.


Subject(s)
Mice , Animals , Tumor Microenvironment , Colonic Neoplasms/genetics , Fluorouracil/pharmacology , Polysaccharides/pharmacology , CD8-Positive T-Lymphocytes/metabolism , RNA, Messenger/metabolism
14.
China Pharmacy ; (12): 57-61, 2023.
Article in Chinese | WPRIM | ID: wpr-953718

ABSTRACT

OBJECTIVE To optimize extraction technology of couplet medicinals of Astragalus membranaceus-Puerariae lobatae. METHODS With contents of puerarin,daidzin,calycosin-7-O-β-D-glucopyranoside,daidzein,calycosin and formononetin and the yield of dry extract as index,the analytic hierarchy method was used to determine the weight coefficient of each index and calculate the comprehensive score. The effects of solid-liquid ratio, extraction times and extraction time on the comprehensive score were investigated by single factor test. The level of each factor was determined. By multi-index comprehensive scoring method, using comprehensive scores of above 7 indexes as indexes,the extraction technology of couplet medicinals of A. membranaceus-P. lobata was optimized by orthogonal experiment,and the validation tests were conducted. RESULTS The weight coefficient for the contents of puerarin,daidzin,calycosin-7-O-β-D-glucopyranoside,daidzein,calycosin and formononetin and the yield of dry extract were respectively 0.304 7,0.065 2,0.185 8,0.185 8,0.107 8,0.107 8 and 0.042 7. The optimal extraction technology was determined as follows: solid-liquid of 1∶8(g/mL),extracting 3 times and for 1 h each time. RSD of each evaluation index in the validation test results was lower than 3.00% (n=3). CONCLUSIONS The optimized extraction technology for A. membranaceus-P. lobata is stable and feasible.

15.
Chinese Pharmacological Bulletin ; (12): 18-23, 2023.
Article in Chinese | WPRIM | ID: wpr-1013873

ABSTRACT

Hepatic fibrosis is present in most chronic liver disease processes, and there are no ideal anti-fibrotic drugs available. Astragalus has a long history of medicinal use, and its anti-fibrotic effects have been confirmed by modern studies. In this study we have searched the literature to identify the signaling pathways and mechanisms of action of Astragalus and its active ingredients on hepatic fibrosis in recent years, so as to provide the basis and ideas for the development of anti-fibrotic drugs and mechanisms of Astragalus. It is showed that the active ingredients of Astragalus act through regulating p38MAPK, TGF-pl/Smads,NF-

16.
Chinese Pharmacological Bulletin ; (12): 332-339, 2023.
Article in Chinese | WPRIM | ID: wpr-1013861

ABSTRACT

Aim To investigate the effects of astragalus polysaccharides on the improvement of liver and kidney injury and the regulation of intestinal flora structure in cadmium exposed rats. Methods Rats exposed to cadmium were established by intraperitoneal injection of CdCl2. After continuous intragastric administration of astragalus polysaccharides for five weeks, urine, liver, kidney and feces were collected. The cadmium residues in urine, liver and kidney were detected by Graphite Furnace Atomic absorption spectrometry, the pathological changes of liver and kidney were observed by HE staining, and Illumina PE250 sequencing and bioinformatics software were used to analyze the structure of intestinal flora. Results After intraperitoneal injection of CdCl2, the accumulation of cadmium in urine, liver and kidney increased significantly, some liver and kidney cells showed pathological damage such as swelling, necrosis and inflammatory cell infiltration. Chao, ace and shannon indexes decreased significantly, while simpson index increased significantly. The number of OTU decreased. And the abundance of Ruminococcus, Bacteroides, Flavonifractor, Roseburia and Elusmicrobium decreased significantly, but Lactobacillus, that of Lachnospiracea_incertae_sedis, Parasutterella, Clostridium XlVb, Clostridium XI, Integinimonas and Fusobacterium increased significantly. Compared with the normal control group, the differences was statistically significant(P<0.05 or P<0.01). After intragastric administration of astragalus polysaccharides, cadmium accumulation in urine, liver and kidney decreased significantly, liver and kidney cell damage alleviated, and inflammatory cell infiltration reduced. Chao, ace and shannon index increased markedly, and simpson index decreased significantly. OTU number increased. And the bundance of Prevotella, Bacteroides, Parasutterella, Elismicrobium and Barnesiella raised significantly, that of Ruminococcus, Oscillibacter, Flavonifractor, Clostridium XlVa, Roseburia, Lactobacillus, Ruminococcus2, Lachnospiracea_incertae_sedis, Clostridium IV, Clostridium XlVb, Clostridium XI and integinimonas decreased significantly, which was statistically significant compared with the group exposed to cadmium alone(P<0.05 or P<0.01). Conclusions Astragalus polysaccharides may improve liver and kidney injury by reducing cadmium accumulation and regulating the structure of intestinal flora in cadmium exposed rats.

17.
Acta Pharmaceutica Sinica ; (12): 779-788, 2023.
Article in Chinese | WPRIM | ID: wpr-965628

ABSTRACT

Size and surface modification are the two key factors affecting the effect of macrophages polarization induced by superparamagnetic iron oxide nanoparticles (SPIONs). The smaller the particle size, the better the polarization effect of SPIONs. Besides, the reasonable SPIONs surface modification method can also be used to enhance the polarization effect. In this study, SPIONs was prepared by solvothermal method and optimized by Box-Benhnken center combination design and response surface method. Furthermore, astragalus polysaccharide-superparamagnetic iron oxide nanocomplex (APS-SPIONs) was successfully constructed by EDC/NHS esterification method. The structure of APS-SPIONs was confirmed by dynamic light scatter and infrared spectrometer, and the contents of iron and polysaccharide were characterized by spectrophotometry. The effect of APS-SPIONs on inducing mouse macrophages RAW264.7 polarization was investigated by flow cytometry. The RAW264.7 macrophages-HepG2 human hepatoma cancer cells Transwell co-culture system was established to investigate APS-SPIONs improve anti-tumor function of macrophages in vitro, and the proliferation activity of APS-SPIONs on RAW264.7 detected by cell counting kit-8 (CCK-8) method. The results showed that the average particle size and zeta potential of APS-SPIONs were (82.93 ± 1.47) nm and (-24.00 ± 0.47) mV. Polysaccharide and Fe content were 8.69% and 7.04%, respectively. APS-SPIONs effectively induced the polarization of RAW264.7 into M1 type in vitro, improving the anti-tumor ability of macrophages in a co-culture system, without effecting the proliferation of macrophages. Our study provides a drug development strategy and preliminary research results to educate macrophages and reshape the tumor immune microenvironment to achieve tumor-killing effects.

18.
Chinese Journal of Biologicals ; (12): 53-58+69, 2023.
Article in Chinese | WPRIM | ID: wpr-965579

ABSTRACT

@#Objective To investigate the effect of astragalus membranaceus(AM)injection on apoptosis and autophagy of human gastric epithelial cell line(GES⁃1)induced by enterovirus 71(EV71). Methods GES⁃1 cells were cultured in vitro and divided into infected group(EV71 infected at a MOI of 3 and control group(no virus infected). The morpho⁃logical changes of EV71 infected cells were observed by inverted microscope. The level of VP1 in GES⁃1 cells infected with EV71 was detected by Western blot;CCK⁃8 assay was used to detect the viability of GES⁃1 cells infected with EV71;Nuclear staining with DAPI was used to observe the morphological changes of nuclear apoptosis infected with EV71. GES⁃1 cells were divided into control group(without virus infection),infection group and AM intervention group with final concentration of 1,2. 5,5 and 10 μg/mL,respectively. Western blot was used to detect the effect of AM intervention on the expression of apoptosis⁃related proteins Caspase⁃3,PARP and autophagy⁃related proteins LC3 and P62 in GES⁃1 cells infected withEV71. CCK⁃8 method was used to detect the effect of AM intervention on the viability of GES⁃1 cells infected with EV71. Results GES⁃1 cells were round,shrunken with nuclear pyknosis and uneven size;VP1 level increased(t = 41. 56,P < 0. 01),cell viability decreased(t = 19. 07,P < 0. 01),Caspase⁃3 and PARP proteins were cut off(t = 35. 29 and 3. 648, P < 0. 01 and 0. 021 8,respectively),LC3Ⅱ/LC3Ⅰ ratio increased(t = 10. 16,P = 0. 000 5)and P62 protein was degraded(t = 68. 68,P < 0. 01);AM inhibited the degradation of Caspase⁃3,PARP and P62 proteins induced by EV71 (t = 52. 66,59. 60 and 40. 22,respectively,each P < 0. 01)and increased the ratio of LC3Ⅱ/LC3Ⅰ(t = 5. 521,P = 0. 005 3),andreducedtheinhibitoryeffectofEV71ontheviabilityofGES⁃1cells(t =4. 420,P =0. 0115). Conclusion EV71 infection induced apoptosis of GES⁃ 1 cells and AM intervention inhibited EV71 induced apoptosis by inhibiting EV71 induced autophagy.

19.
Acta Pharmaceutica Sinica ; (12): 2168-2179, 2023.
Article in Chinese | WPRIM | ID: wpr-999122

ABSTRACT

Astragalus, which was first documented in Shennong Bencao Jing, is the dried root of Astragalus membranaceus (Fisch.) Bge. or Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao. The active ingredients astragalus membranaceus saponins (AMS), astragalus polysaccharides (APS) and astragalus flavonoids (AFS) have pharmacological effects such as anti-tumor properties, lowering blood sugar, regulating lipid metabolism, cardiovascular protection, anti-oxidation, bone protection, anti-fibrosis, etc. Fibrosis affects almost all organs, particularly vital organs such as the lungs, liver, heart and kidneys. The primary pathological changes of fibrosis involve abnormal increase of myofibroblasts and excessive deposition of extracellular matrix (ECM) components, which lead to the formation of scar tissue, ultimately resulting in fibrosis and even functional loss or failure of organs, which seriously threatens human health and life. Recent, studies have shown that Astragalus membranaceus has a good therapetuic effect on organ fibrosis. This article reviews the current advances of Astragalus in the prevention and treatment of fibrosis of lungs, liver, heart, kidneys and other important organs.

20.
Journal of Pharmaceutical Analysis ; (6): 253-262, 2022.
Article in Chinese | WPRIM | ID: wpr-931252

ABSTRACT

The compounds in leaf and stem extracts of Astragalus emarginatus Labill.(AEL),a plant species used in traditional Lebanese medicine,were investigated for antioxidant properties.First,the activity of various extracts was assessed using the Trolox equivalent antioxidant capacity,oxygen radical absorption ca-pacity,and 2,2-diphenyl-1-picryl-hydrazy l-hydrate assays.The extract obtained using 30%ethanol showed the greatest activity.The antioxidant compounds in this extract were screened using a hy-phenated high-performance liquid chromatography-2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate)radical(ABTS+)system before being separated by ultra-high-performance liquid chromatography and identified using high-resolution mass spectrometry and ultra-violet-visible diode array detection.Approximately 40 compounds were identified.Hydroxycinnamates(caffeic,ferulic,and p-coumaric acid derivatives)and flavonoids(quercetin,luteolin,apigenin,and isorhamnetin derivatives)were the two main categories of the identified compounds.The active compounds were identified as caffeic acid de-rivatives and quercetin glycosides.In addition,the catechol moiety was shown to be key to antioxidant activity.This study showed that AEL is a source of natural antioxidants,which may explain its medicinal use.

SELECTION OF CITATIONS
SEARCH DETAIL