Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Journal of Urology ; : 750-760, 2005.
Article in Korean | WPRIM | ID: wpr-61279

ABSTRACT

PURPOSE: To identify the mechanism of azaline B-dependent apoptosis, the regulation of Fas and FasL genes has been investigated. MATERIALS AND METHODS: Azaline B was subcutaneously injected into Sprague-Dawley rats. The levels of Fas receptor (Fas) and Fas ligand (FasL) were detected by reverse transcription-polymerase chain reaction (RT- PCR). Azaline B-dependent apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick and labeling (TUNEL) and DNA fragmentation assay. Transacting factor of FasL promoter was identified by DNase I footprinting and DNA mobility shift assay. RESULTS: The azaline B-treated testis (250microgram/kg body wt/day) had decreased to 70+/-2.5% and 38+/-1.8% of the normal testis weight at 3 and 5 days after the injection, respectively, but the weights of the testis were not changed after pretreatment of follicle-stimulating hormone (FSH) and testosterone. Apoptosis of the testis was detected by DNA fragmentation assay and TUNEL assay after the azaline B treatment. The levels of Fas and FasL mRNA were increased by the treatment of azaline B in both time- and dose-dependent manners. In DNase I footprinting assay with FasL promoter, the nuclear factor prepared from control was bound with at least four sites: SP-1 binding site at 283, NF-kappa B binding site at 219, TATA at 132 and the gamma-interferon response element (gamma-IRE) at 78. gamma-IRE was completely protected by the nuclear extract prepared from azaline B-treated rat testis. In DNA mobility shift assay, the binding activity of gamma-IRE binding protein was increased after azaline B treatment. CONCLUSIONS: These results suggest that Fas-FasL system may be important to azaline B-dependent apoptosis in rat testis and that gamma-IRE binding protein is related to the azaline B-dependent regulation of FasL gene.


Subject(s)
Animals , Rats , fas Receptor , Apoptosis , Binding Sites , Carrier Proteins , Deoxyribonuclease I , DNA , DNA Fragmentation , Electrophoretic Mobility Shift Assay , Fas Ligand Protein , Follicle Stimulating Hormone , In Situ Nick-End Labeling , Interferon-gamma , NF-kappa B , Rats, Sprague-Dawley , Response Elements , RNA, Messenger , Testis , Testosterone , Weights and Measures
2.
Korean Journal of Urology ; : 1157-1166, 2003.
Article in Korean | WPRIM | ID: wpr-32098

ABSTRACT

PURPOSE: Androgen deprivation triggers a sequence of events that activates apoptotic cell death of the androgen-dependent epithelial cells within the rat ventral prostate, ultimately resulting in the involution of the gland. To investigate the mechanism of azaline B-dependent apoptosis in the rat ventral prostate, the regulation of apoptosis-related genes were examined. MATERIALS AND METHODS: Azaline B was subcutaneously injected in Sprague-Dawley rat. Fas receptor(Fas), Fas ligand(FasL), bcl-2 mRNA, and protein levels were detected by RT-PCR and Western blot. Azaline B-dependent apoptosis was determined by TUNEL and DNA fragmentation assay. Transacting factor of FasL promoter was identified by DNA footprinting and DNA mobility shift assay. RESULTS: The prostate regressed after azaline B treatment in rat, and the involuted ventral prostate regenerated after testosterone pretreatment. Apoptosis of the ventral prostate was detected by TUNEL assay and apoptotic DNA fragmentation assay after azaline B treatment. The levels of Fas and FasL mRNA and protein increased after azaline B treatment. In DNase I footprinting assay with FasL promoter using nuclear extract prepared from control prostate, at least two sites were protected: SP-1 binding site at -283bp and prostate-unidentified factor(P-UF) binding site at -247bp. SP-1 binding activity vanished in the nuclear extract prepared from azaline B-treated rats. In the DNA mobility shift assay, SP-1 binding activity decreased after azaline B treatment. Bcl-2 mRNA and protein were downregulated after azaline B treatment. CONCLUSIONS: These results suggest that Fas/FasL system and Bcl-2 are important to azaline B-dependent apoptosis in rat ventral prostate and that SP-1 is related to azaline B-dependent regulation of the FasL gene.


Subject(s)
Animals , Rats , fas Receptor , Apoptosis , Binding Sites , Blotting, Western , Cell Death , Deoxyribonuclease I , DNA , DNA Footprinting , DNA Fragmentation , Electrophoretic Mobility Shift Assay , Epithelial Cells , Fas Ligand Protein , Genes, bcl-2 , In Situ Nick-End Labeling , Prostate , Rats, Sprague-Dawley , RNA, Messenger , Testosterone
SELECTION OF CITATIONS
SEARCH DETAIL