Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Article | IMSEAR | ID: sea-219386

ABSTRACT

Discharge of textile industrial effluent without proper treatment has become a severe hazard for the animal health and environment worldwide. Therefore, this study was designed to isolate azo dye-degrading bacteria from textile wastewater and evaluate their ability to biodegrade reactive dyes into non-toxic products. The potent bacterial strain which was isolated from textile wastewater was identified as Pseudomonas monteilii strain RZT1 on the basis of 16S rDNA sequence. The isolated bacterial strain exhibited good decolorization ability with yeast extract supplementation as cosubstrate in static conditions for Malachite Green dye. The optimal condition for the decolorization of Malachite Green dye by P. monteilii strain RZT1 were at pH 7.0 and 28癈. Decolorization rates of Malachite Green dye by P. monteilii strain RZT1 were varied with initial dye concentration as follow: 84.8%, 75.4%, 63.4% and 45.5% decolorization for 100ppm, 200ppm, 300ppm and 400ppm initial dye concentration respectively. We investigated the effects of dyes used in the textile industry on the seed germination of Five crops - Rice (Oryza sativa), Wheat (Triticum aestivum L.), Khesari (Lathyrus sativus), Mustard (Brassica nigra) and Bitter Melon (Momordica charantia). It was found that textile dye Malachite Green had negative effect on seed germination and seedling growth in test cultures. The harmful effects of dye on seed germination and early seedling growth parameters were augmented with increase of dye concentration. Interestingly, treatment of the Malachite Green dye with isolated bacteria reduced the adverse effects of that dye on seed germination and seedling growth. Thus, it indicated the potentiality of P. monteilii strain RZT1 for bioremediation of textile effluents into a non-toxic form for plants.

2.
Article | IMSEAR | ID: sea-219381

ABSTRACT

Due to rapid industrialization and market demand of vibrant textile products, the natural textile dyes have been replaced by the synthetic textile dyes. These synthetic dyes are released in environment with textile wastewater resulting in a major environmental pollution, especially in aquatic ecosystem. Hence, aquatic organisms like fish are highly vulnerable to the pollution caused by dyes of textile wastewater. This study was designed to evaluate the deleterious effects of Basic Red-18 (BR-18) dye on behavior, survivability, haematology and histology of Tilapia fish (Tilapia mossambica) and to minimize these deleterious effects of BR-18 dye by bioremediation with the novel bacteria isolated from textile wastewater. The isolated novel bacteria was identified as Mangrovibacter yixingensis strain AKS2 by 16s rRNA sequencing (Accession no. OM189530). The 30% and 70% mortality rates were observed in fish exposed to commercial BR-18 dye at concentrations of 100 and 200 ppm respectively. Interestingly, the mortality rate of fish was decreased significantly to 10% and 20% when fish were exposed to 100 and 200 ppm BR-18 dye respectively after bioremediation with M. yixingensis strain AKS2. Fish exposed to tap water and bioremediated BR-18 dye solution exhibited typical behavioral responses, whereas fish exposed to commercial BR-18 dye solution exhibited anomalous behavior. Fish subjected to commercial BR-18 dye solution displayed decreased RBC, Hb, but increased WBC levels, demonstrating the dye's haemotoxicity. Contrary, no remarkable haematological toxic effect was found when fish were exposed to bioremediated BR-18 dye indicating the non-toxic character of the bioremediated dye metabolites. Similarly, extensive histological abnormalities in the gill, liver, intestinal, stomach, and heart tissues were seen when fish was cultured in commercial BR-18 dye, but the abnormalities were less significant when fish were raised in bioremediated BR-18 dye. Altogether, it can be concluded that BR-18 dye are toxic to fish, but this toxicity can be minimized by bioremediation with M. yixingensis strain AKS2.

3.
Malaysian Journal of Microbiology ; : 68-78, 2022.
Article in English | WPRIM | ID: wpr-977454

ABSTRACT

Aims@#The present study investigated the biodegradation and removal of dye mixture (Remazol Brilliant Violet 5R and Reactive Red 120) using a new bacterial consortium isolated from dye-contaminated soil.@*Methodology and results@#Among the total 15 isolates screened, the two most efficient bacterial species (SS07 and SS09) were selected and identified as Enterobacter cloacae (MT573884) and Achromobacter pulmonis (MT573885). The removal efficiency of dye mixture by E. cloacae and A. pulmonis at an initial concentration of 100 mg/L was 82.78 and 84.96%, discretely. The bacterial consortium was developed using selected isolates and the optimum conditions for removing dyes were investigated. The maximum decolorization efficiency was achieved at pH 7; 35 °C; dye concentration, 100 mg/L; and initial inoculum concentration, 0.5 mL with mannitol and ammonium sulfate as carbon and nitrogen sources. The maximum removal efficiency of 91.3 ± 3.35% was achieved at the optimal conditions after 72 h of incubation.@*Conclusion, significance and impact of study@#Decolorization of azo dyestuff by the developed microbial consortia conforms to the zero-order reaction kinetics model. Consortia of E. cloacae and A. pulmonis was established as an effective decolorizer for the Remazol Brilliant violet 5R and Reactive Red 120 dye mixture with >90% color removal.


Subject(s)
Azo Compounds , Microbial Consortia
4.
Rev. colomb. ciencias quim. farm ; 49(3): 699-709, Sep.-Dec. 2020. graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1156311

ABSTRACT

RESUMO O desempenho dos polímeros condutores dos corantes azoicos durante a detecção eletroquímica de indigo-carmim foi investigado do ponto de vista teórico, sendo o modelo, correspondente ao caso, descrito e analisado mediante a teoria de estabilidade lineal e da análise de bifiircações. Foi mostrado que o sistema eletroanalítico depende fortemente do pH, pois as concentrações excessivas dos prótons levam à ineficiência eletroanalítica, haja vista o bloqueio dos centros ativos da reação. No entretanto, malgrado o supracitado, os polímeros dos corantes azoicos são modificadores eficientes para determinação do indigo-carmim. A possibilidade das instabilidades oscilatória e monotônica também foi verificada.


SUMMARY The function of the conducting polymers of azo-dyes during the indigo-carmine electrochemical detection has been investigated from the theoretical point of view. The correspondent model has been described and analyzed by means of linear stability theory and bifurcation analysis. It has been shown that the electroanalytical system depends strongly on pH, as the excessive protons concentrations drive the system to the electroanalytical inefficiency, as they block the reaction active sites. Nevertheless, despite of the mentioned, the azo-dyes conducting polymers are efficient modifiers for indigo-carmine electrochemical determination. The possibility of oscillatory and monotonic instabilities has also been verified.

5.
Electron. j. biotechnol ; 46: 22-29, jul. 2020. tab, graf
Article in English | LILACS | ID: biblio-1223226

ABSTRACT

BACKGROUND: Removal of dyes from wastewater by microorganisms through adsorption, degradation, or accumulation has been investigated. Biological methods used for dye treatment are generally always effective and environmentally friendly. In this study, biosorption of the Fast Black K salt azo dye by the bacterium Rhodopseudomonas palustris 51ATA was studied spectrophotometrically, at various pH (2­10), temperatures (25°C, 35°C, and 45°C) and dye concentrations (25­400 mg L-1). RESULTS: The bacterial strain showed extremely good dye-removing potential at various dye concentrations. IR studies at different temperatures showed that the dye was adsorbed on the bacterial surface at lower temperatures. Characteristics of the adsorption process were investigated by Scatchard analysis at 25°C and 35°C. Scatchard analysis of the equilibrium binding data for the dye on this bacterium gave rise to linear plots, indicating that the Langmuir model could be applied. The regression coefficients obtained for the dye from the Freundlich and Langmuir models were significant and divergence from the Scatchard plot was observed. CONCLUSION: The adsorption behavior of the dye on this bacterium was expressed by the Langmuir, Freundlich, and Temkin isotherms. The adsorption data with respect to various temperatures provided an excellent fit to the Freundlich isotherm. However, when the Langmuir and Temkin isotherm models were applied to these data, a good fit was only obtained for the dye at lower temperatures, thus indicating that the biosorption ability of R. palustris 51ATA is dependent on temperature, pH, and dye concentration.


Subject(s)
Rhodopseudomonas/metabolism , Diazonium Compounds/metabolism , Coloring Agents/metabolism , Temperature , Azo Compounds/analysis , Azo Compounds/metabolism , Contaminant Removal , Adsorption , Coloring Agents/analysis , Wastewater , Hydrogen-Ion Concentration
6.
Eng. sanit. ambient ; 25(2): 361-369, mar.-abr. 2020. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1098206

ABSTRACT

RESUMO As leveduras vêm apresentando bons resultados na biodegradação de corantes, tornando-se uma alternativa ambientalmente segura e de custo mais baixo para o tratamento de efluentes contendo corantes industriais. Assim, o objetivo deste trabalho foi estudar a descoloração do azo corante Preto Reativo 5 (PR5) pela levedura Pichia kudriavzevii SD5. Para otimização dos parâmetros de descoloração do Preto Reativo 5 foram realizados dois planejamentos experimentais do tipo Delineamento Composto Central Rotacional (DCCR) 23, sendo cada planejamento composto por 17 ensaios, a 150 rpm durante 24 h. As variáveis estudadas foram pH, temperatura e concentração do corante e tiveram como resposta a porcentagem de descoloração. Também foram realizados testes de toxicidade do sobrenadante após 16 h e 24 h de cultivo, utilizando-se sementes de alface (Lactuca sativa) e o microcrustáceo Artemia salina. Os resultados mostraram que a P. kudriavzevii SD5 é uma levedura tolerante a vários tipos de estresse, uma vez que apresentou capacidade de degradar elevadas concentrações do corante PR5 a 45° C. Entretanto, apenas a temperatura apresentou influência estatisticamente significativa (p < 0,05) na descoloração do PR5. Os bioensaios de toxicidade demonstraram que ocorreu diminuição da toxicidade após 24 h de cultivo, e o perfil de absorbância do sobrenadante apontou para um mecanismo degradativo de descoloração.


ABSTRACT Yeasts have been showing good results in the biodegradation of industrial dyes, becoming an environmentally safe and cost-effective alternative for the treatment of effluents containing industrial dyes. Thus, the objective of this work was to study the discoloration of the Reactive Black 5 (RB5) azo dye by the yeast Pichia kudriavzevii SD5. Two experimental designs were employed to optimize the discoloration parameters by means of Central Composite Design (CCD) 23, totalizing 17 trials each, at 150 rpm for 24 h. The studied independent variables were pH, temperature, and concentration of the dye and the outcome parameter was the rate of decolorization (%). Furthermore, the toxicity bioassays of the supernatant after 16 and 24 h of the culture were carried out using lettuce seeds (Lactuca sativa) and the microcrustacean Artemia salina. Results showed that P. kudriavzevii SD5 is a multi-stress tolerant yeast, being capable to degrade high concentrations of RB5 at 45° C. However, only the temperature showed statistical significance (p < 0.05) for dye discoloration. Toxicity bioassays demonstrated that toxicity decreased after 24 h of culture and the absorbance profile of the supernatant pointed to a degradative mechanism of discoloration.

7.
Electron. j. biotechnol ; 43: 1-7, Jan. 2020. tab, graf, ilus
Article in English | LILACS | ID: biblio-1087520

ABSTRACT

Background: Textile industry not only plays a vital role in our daily life but also a prominent factor in improving global economy. One of the environmental concern is it releases huge quantities of toxic dyes in the water leading to severe environmental pollution. Bacterial laccase and azoreductase successfully oxidize complex chemical structure of nitrogen group-containing azo dyes. Additionally, the presence of textile dye infuriates bacterial peroxidase to act as a dye degrading enzyme. Our present study deals with three textile dye degrading enzymes laccase, azoreductase, and peroxidase through analyzing their structural and functional properties using standard computational tools. Result: According to the comparative analysis of physicochemical characteristics, it was clear that laccase was mostly made up of basic amino acids whereas azoreductase and peroxidase both comprised of acidic amino acids. Higher aliphatic index ascertained the thermostability of all these three enzymes. Negative GRAVY value of the enzymes confirmed better water interaction of the enzymes. Instability index depicted that compared to laccase and preoxidase, azoreductase was more stable in nature. It was also observed that the three model proteins had more than 90% of total amino acids in the favored region of Ramachandran plot. Functional analysis revealed laccase as multicopper oxidase type enzyme and azoreductase as FMN dependent enzyme, while peroxidase consisted of α-ß barrel with additional haem group. Conclusion: Present study aims to provide knowledge on industrial dye degrading enzymes, choosing the suitable enzyme for industrial set up and to help in understanding the experimental laboratory requirements as well.


Subject(s)
Azo Compounds/metabolism , Peroxidase/chemistry , Laccase/chemistry , NADH, NADPH Oxidoreductases/chemistry , Temperature , Azo Compounds/chemistry , Textile Industry , Biodegradation, Environmental , Computer Simulation , Enzyme Stability , Peroxidase/metabolism , Lactase/metabolism , Coloring Agents/metabolism , NADH, NADPH Oxidoreductases/metabolism
8.
Article | IMSEAR | ID: sea-203799

ABSTRACT

According to one pot microwave assisted synthesis, the versatile precursor 2- aminothiazole was prepared and utilized for the construction of new thiazole hybrids targeting MCF7 cell lines. 2‐amino thiazole was condensed with corresponding aldehydes to yield Schiff’sbase (2) intermediates followed by the diazo coupling reaction furnished the designed hybrids(3) contains azo-methine and diazo linkages in its structures. The newly synthesizedcompounds were confirmed on the basis of IR and H1NMR spectral analytical data. All thesynthesized compounds were evaluated for their in-vitro cytotoxicity activity against MCF-7celllines using MTT assay method. The obtained results revealed the more promising compoundsof the synthesised series, 3B and 3H with CTC50 value of 17.77±0.31μg/ml, 17.83±1.14 μg/ml.

9.
Braz. arch. biol. technol ; 62: e19180338, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011519

ABSTRACT

(1) Background: In this study, the effects of different pH values ​​(2.4, 3.2, 4.4 and 5.0), temperatures (30, 35, 40, 45 and 50°C) and agitation (100 rpm) on the enzymatic decolourisation of twenty-two dyes belonging to the chromophore groups anthraquinone, azo and triphenylmethane were assessed. (2) Methods: In all conditions, it was used a crude enzyme broth containing 30 U mL-1 laccases produced by Pleurotus sajor-caju PS-2001 in submerged process. (3) Results: Regarding the effects of pH values, the best results were obtained at pH 3.2 and 30°C, in which bleaching was observed for all dyes evaluated. In assays conducted at different temperatures, highest levels of decolourisation were observed at 35°C and pH 3.2 for nineteen of the dyes assessed. Thirteen dyes presented colour reduction exceeding 50% after the enzymatic treatment, including all acid and all disperse dyes evaluated. The reciprocal agitation of 100 rpm promoted negative effect on decolourisation. (4) Conclusion: From the results achieved, one can conclude that the laccase-containing preparation of P. sajor-caju PS-2001 has potential for the decolourisation of some dyes widely used in different industrial sectors, especially in the textile industry, and therefore could be used in future strategies for the biotreatment of coloured wastes.


Subject(s)
Pleurotus/chemistry , Laccase , Bleaching Agents , Azo Compounds , Trityl Compounds , Anthraquinones
10.
Braz. j. microbiol ; 49(2): 285-295, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-889238

ABSTRACT

Abstract Different technologies may be used for decolorization of wastewater containing dyes. Among them, biological processes are the most promising because they seem to be environmentally safe. The aim of this study was to determine the efficiency of decolorization of two dyes belonging to different classes (azo and triphenylmethane dyes) by immobilized biomass of strains of fungi (Pleurotus ostreatus - BWPH, Gleophyllum odoratum - DCa and Polyporus picipes - RWP17). Different solid supports were tested for biomass immobilization. The best growth of fungal strains was observed on the washer, brush, grid and sawdust supports. Based on the results of dye adsorption, the brush and the washer were selected for further study. These solid supports adsorbed dyes at a negligible level, while the sawdust adsorbed 82.5% of brilliant green and 19.1% of Evans blue. Immobilization of biomass improved dye removal. Almost complete decolorization of diazo dye Evans blue was reached after 24 h in samples of all strains immobilized on the washer. The process was slower when the brush was used for biomass immobilization. Comparable results were reached for brilliant green in samples with biomass of strains BWPH and RWP17. High decolorization effectiveness was reached in samples with dead fungal biomass. Intensive removal of the dyes by biomass immobilized on the washer corresponded to a significant decrease in phytotoxicity and a slight decrease in zootoxicity of the dye solutions. The best decolorization results as well as reduction in toxicity were observed for the strain P. picipes (RWP17).


Subject(s)
Basidiomycota/metabolism , Water Pollutants, Chemical/metabolism , Coloring Agents/metabolism , Azo Compounds/metabolism , Trityl Compounds/metabolism , Biotransformation , Cells, Immobilized/metabolism , Adsorption , Wastewater
11.
Article | IMSEAR | ID: sea-187741

ABSTRACT

Objectives: Azo dye accounts for majorly produced synthetic dye substances in industries, posing a threat to all possible life forms. This study was focused to isolate azo dye “Orange M2R” and “Green GS” degrading bacterial strain from textile effluent soil samples and optimization of their optimum physio-chemical growth conditions. Methodology: To achieve above-mentioned objective, sludge samples were collected from textile industrial area and were applied to 1%, 3% and 5% dye containing SM broth to observe the dye degrading capability of those samples that contain acclimatized bacteria. ABIS microbiology software (Advanced Bacterial Identification Software) was used to justify and determine the identity of these bacteria with the aid of results obtained from the biochemical tests that were undertaken. Results: Bacterial strains identified in this study were Enterococcus termitis, Enterococcus camelliae, Bacillus farraginis, Bacillus muralis, Paenibacillus macerans, Bacillus decolorationis, and Macrococcus brunensis. Out of these isolates Enterococcus termitis, Bacillus farraginis, Paenibacillus macerans, Bacillus decolorationis emerged out to be most potent decolourizer, being selected for further studies. Bacillus farraginis was identified as the best decolourizer of OM2R (Orange M2R) dye that decolourized 98% of the dye and Paenibacillus macerans showed maximum decolourization on GGS(Green GS) dye that decolourized 97% of the dye. The effect of pH, NaCl, temperature and initial concentration of dye was studied with an aim to determine the optimal conditions required for maximum decolourization. The research showed different decolourization rate with varying parameters. The optimum pH for decolourization of OM2R and GGS dye was 7.0, the optimum NaCl concentration for decolourization was 2%, initial dye concentration was 1% and the temperature was 37°C for optimum decolourization by the selected isolates. Conclusion: The findings are well acclimatized and have potentials for bioremediation in textile waste effluent treatment plants.

12.
Braz. arch. biol. technol ; 61: e18160237, 2018. graf
Article in English | LILACS | ID: biblio-974114

ABSTRACT

ABSTRACT Dye stuff released to the ecosystem from textile industries cause a serious contamination and become a major environmental problem over the last few decades. As biological decolorization of textile wastewater is an important issue, Fusarium . acuminatum was used to removal of a frequently used textile dye, methyl orange. Live pellet of Fusarium acuminatum was used and decolorization studies performed in various temperatures and pH conditions with different dye concentrations. The highest decolorization rate was observed at 35ᴼC. 60 mg/L was found as the optimum initial dye concentration. In the pH range of 3-4, decolorization rate was approximately 70%. It was seen that Fusarium acuminatum have the great ability of the methyl orange removal. To our knowledge, it took place for the first time in the literature.


Subject(s)
Azo Compounds , Fusarium , Adsorption , Coloring Agents
13.
Ciênc. rural (Online) ; 48(9): e20180071, 2018. graf
Article in English | LILACS | ID: biblio-1045209

ABSTRACT

ABSTRACT: The objective of this research was to evaluate the efficiency of artificial dyes, sunset yellow and red bordeaux S, and the use of glycerol in different concentrations to consistently stain fungal structures in slides containing spores of Oidium sp., Albugo ipomoeae-panduratae, Pochonia chlamydosporia and hyphae of Phytopythium helicoides. Commercial product mixtures of the artificial dyes at 0.5, 1.0, 1.5, 2.0, 3.0 and 5.0% (w/v) added with glycerol at 0.25, 0.5 and 1.0% were evaluated. To stain chlamydospores, the suspension was placed in the staining solution or heated at 80ºC for 5 minutes. The slides were prepared by the wet mount slide method. Fungal spores were consistently stained starting at a concentration of 2% of the staining solution. The addition of glycerol to the staining solution improved the contrast of the sporangia, hyphae and chlamydospores. Higher intensity and uniformity of chlamydospore's staining was verified using 3% dye solution and 1% heated glycerol, when compared to the unheated and blue-cotton solution.


RESUMO: Neste trabalho, objetivou-se avaliar a eficiência dos corantes artificiais, amarelo crepúsculo e vermelho bordeaux S, e o uso do glicerol em diferentes concentrações, na montagem de lâminas com esporos de Oidium sp., Albugo ipomoeae-panduratae, Pochonia chlamydosporia e hifas de Phytopythium helicoides. Foram avaliadas as concentrações de 0,5, 1,0, 1,5, 2,0, 3,0 e 5,0% (p/v) do produto comercial da mistura dos corantes artificiais e adição de glicerol nas concentrações de 0,25, 0,5 e 1,0%. Para coloração de clamidósporos, a suspensão foi colocada na solução corante ou aquecida a 80ºC por 5 minutos e as lâminas preparadas com líquido de montagem. A partir da concentração de 2% da mistura dos corantes houve maior coloração dos esporos. A adição de glicerol na solução corante melhorou o contraste dos esporângios, hifas e clamidósporos. Maior intensidade e uniformidade de coloração de clamidósporos ocorreram na solução corante 3% e glicerol 1% aquecida, em comparação com a solução sem aquecimento e azul-de-algodão.

14.
Mycobiology ; : 79-83, 2018.
Article in English | WPRIM | ID: wpr-729998

ABSTRACT

Azo dyes containing effluents from different industries pose threats to the environment. Though there are physico-chemical methods to treat such effluents, bioremediation is considered to be the best eco-compatible technique. In this communication, we discuss the decolorization potentiality of five azo dyes by Podoscypha elegans (G. Mey.) Pat., a macro-fungus, found growing on the leaf-litter layer of Bethuadahari Wildlife Sanctuary in West Bengal, India. The fungus exhibited high laccase and very low manganese peroxidase activities under different culture conditions. Decolorization of five high-molecular weight azo dyes, viz., Orange G, Congo Red, Direct Blue 15, Rose Bengal and Direct Yellow 27 by the fungus was found to be positive in all cases. Maximum and minimum mean decolorization percentages were recorded in Rose Bengal (70.41%) and Direct Blue 15 (24.8%), respectively. This is the first record of lignolytic study and dye decolorization by P. elegans.


Subject(s)
Azo Compounds , Biodegradation, Environmental , Citrus sinensis , Congo Red , Fungi , India , Laccase , Manganese , Peroxidase , Rose Bengal
15.
Electron. j. biotechnol ; 26: 7-11, Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-1009153

ABSTRACT

Background: Textile and dye industries pose a serious threat to the environment. Conventional methods used for dye treatment are generally not always effective and environmentally friendly. This drove attention of scores of researchers to investigate alternative methods for the biodegradation of dyes using fungal strains. In this work, white-rot fungus (Panus tigrinus) was used as a biosorbent for the decolorization of Reactive Blue 19. The process parameters that were varied were initial concentration (50­150 mg/L), contact time (30­90 min), and pH (2­6). In addition, to gain important data for the evaluation of a sorption process, the equilibrium and kinetics of the process were determined. Results: White-rot fungus showed great potential in decolorizing Azo dyes. The strain showed the maximum decolorization of 83.18% at pH 2, a contact time of 90 min, and an initial concentration of 50 mg/L. The Langmuir isotherm described the uptake of the Reactive Blue 19 dye better than the Freundlich isotherm. Analysis of the kinetic data showed that the dye uptake process followed the pseudo second-order rate expression. Conclusion: The biosorption process provided vital information on the process parameters required to obtain the optimum level of dye removal. The isotherm study indicated the homogeneous distribution of active sites on the biomass surface, and the kinetic study suggested that chemisorption is the rate-limiting step that controlled the biosorption process. According to the obtained results, P. tigrinus biomass can be used effectively to decolorize textile dyes and tackle the pollution problems in the environment.


Subject(s)
Basidiomycota/chemistry , Anthraquinones/chemistry , Coloring Agents/chemistry , Temperature , Azo Compounds/chemistry , Textile Industry , Time Factors , Basidiomycota/metabolism , Biodegradation, Environmental , Kinetics , Adsorption , Isotherm , Hydrogen-Ion Concentration
16.
Braz. j. microbiol ; 47(1): 39-46, Jan.-Mar. 2016. graf
Article in English | LILACS | ID: lil-775119

ABSTRACT

Abstract Removal of synthetic dyes is one of the main challenges before releasing the wastes discharged by textile industries. Biodegradation of azo dyes by alkaliphilic bacterial consortium is one of the environmental-friendly methods used for the removal of dyes from textile effluents. Hence, this study presents isolation of a bacterial consortium from soil samples of saline environment and its use for the decolorization of azo dyes, Direct Blue 151 (DB 151) and Direct Red 31 (DR 31). The decolorization of azo dyes was studied at various concentrations (100–300 mg/L). The bacterial consortium, when subjected to an application of 200 mg/L of the dyes, decolorized DB 151 and DR 31 by 97.57% and 95.25% respectively, within 5 days. The growth of the bacterial consortium was optimized with pH, temperature, and carbon and nitrogen sources; and decolorization of azo dyes was analyzed. In this study, the decolorization efficiency of mixed dyes was improved with yeast extract and sucrose, which were used as nitrogen and carbon sources, respectively. Such an alkaliphilic bacterial consortium can be used in the removal of azo dyes from contaminated saline environment.


Subject(s)
Azo Compounds/metabolism , Bacteria/metabolism , Color , Industrial Waste , Microbial Consortia , Biotransformation , Bacteria/growth & development , Bacteria/isolation & purification , Carbon/metabolism , Hydrogen-Ion Concentration , Nitrogen/metabolism , Soil Microbiology , Temperature
17.
Chinese Journal of Analytical Chemistry ; (12): 1328-1334, 2016.
Article in Chinese | WPRIM | ID: wpr-503590

ABSTRACT

A cadmium column reduction-azo dyes spectrophotometric method based on micro sequential injection lab-on-valve was established for the determination of total nitrogen in seawater. The experimental parameters were optimized, and the interference experiment was carried out. The results showed that the interference of the main components and salinity in sea water could be eliminated by using a series of standard solution prepared by national standard seawater with certain salinity. The concentration of total nitrogen in seawater was linear with the absorbance in the range of 0 . 03-1 . 00 mg/L with a correlation coefficient of 0. 9993. When determining the national standard seawater at nitrogen concentration of 0. 20 mg/L, the relative standard deviation (RSD) was 4. 9%, the detection limit was 0. 010 mg/L, and the recoveries were 99. 5%-101 . 1%. There were not significance differences between the results of this method and national standard method in the t-test analysis. The method is suitable for the determination of total nitrogen in seawater.

18.
Arq. ciênc. vet. zool. UNIPAR ; 19(3): 159-164, jul.-set. 2016. graf
Article in Portuguese | LILACS, VETINDEX | ID: biblio-833153

ABSTRACT

Lacases são polifenol oxidases que utilizam a capacidade redox de íons cobre para reduzir oxigênio a água e oxidar um substrato fenólico. A síntese e secreção de lacases de basidiomicetos dependem de vários fatores como os nutrientes presentes no meio de cultura. Visando à produção de lacase, Pycnoporus sanguineus foi cultivado em meio contendo melaço de soja como única fonte de carbono, ureia como fonte de nitrogênio suplementar em diferentes concentrações (0,6; 1,2; 2,4; 4,8 e 9,6 g/L de nitrogênio) e diferentes concentrações de CuSO4 (0, 150, 200, 250 e 300 µM). O extrato enzimático produzido nas melhores condições de cultivo foi utilizado para a descoloração dos corantes remazol azul brilhante R (antraquinona), amarelo 145, preto 5, vermelho 195 (azo) e verde malaquita (trifenilmetano). As concentrações de nitrogênio não afetaram a produção de lacase, exceto a maior concentração (9,6 g/L) que reduziu a atividade enzimática. A adição de cobre ao meio de cultivo (150 µM) aumentou a atividade de lacase em 112%. A maior atividade de lacase (~34300 U/L) promoveu a descoloração dos corantes remazol azul brilhante R (67,5%) e verde malaquita (28,3%) em 24h, sendo os corantes azo descoloridos apenas parcialmente. Concluiu-se que o melaço de soja é um resíduo agroindustrial adequado para produção de lacase de P. sanguineus com potencial para degradação de corantes.


Laccases are multicopper oxidases using the redox ability from copper ions to reduce oxygen to water, while oxidizing a phenolic substrate. Laccase synthesis and secretion in basidiomycetes depend on the conditions provided and on the nutrients present in the culture medium. Pycnoporus sanguineus was cultivated in medium containing soybean molasses as the sole carbon source, with urea as the source of supplemental nitrogen at different concentrations (0.6, 1.2, 2.4, 4.8 and 9.6 g/L nitrogen), and different CuSO4 concentrations (0, 150, 200, 250 and 300 µM). The enzymatic extract produced under the best cultivation conditions was used for the depigmentation of remazole brilliant blue R (anthraquinone), yellow 145, black 5, red 195 (azo) and malachite green (triphenylmethane). Nitrogen concentrations did not affect laccase production, except for the higher concentration (9.6 g/L) reducing enzymatic activity. The addition of copper to the culture medium (150 µM) increased laccase activity by 112%. The highest laccase activity (~34300 U/L) promoted the depigmentation of remazol brilliant blue R (67.5%) and malachite green (28.3%) dyes in 24 hours. Azo dyes were only partially discolored. Therefore, it can be considered that soybean molasses is an agro-industrial byproduct suitable for the production of P. sanguineus laccase with potential for dye degradation.


Lacasas son polifenoles oxidasas que utilizan la capacidad redox de iones de cobre para reducir el oxígeno del agua y oxidar un sustrato fenólico. La síntesis y secreción de lacasas de basidiomicetos dependen de las condiciones como los nutrientes presentes en el medio de cultura. Buscando la producción de lacasa, se cultivó Pycnoporus sanguineus en medio que contenía melaza de soja como única fuente de carbono, urea como fuente de nitrógeno suplementar a diferentes concentraciones (0,6, 1,2, 2,4, 4,8 y 9,6 g/L de nitrógeno) y diferentes concentraciones de CuSO4 (0, 150, 200, 250 y 300 µM). El extrato enzimático producido en mejores condiciones de cultivo ha sido utilizado para la decoloración de los colorantes remazol azul brillante R (antraquinona), amarillo 145, negro 5, rojo 195 (azoico) y verde malaquita (trifenilmetano). Las concentraciones de nitrógeno no afectaron la producción de lacasa, excepto la mayor concentración (9,6 g/L) que redujo la actividad enzimática. La adición de cobre al medio de cultivo (150 µM) aumentó la actividad de la lacasa en un 112%. La mayor actividad de lacasa (~34300 U/L) promovió la decoloración de los colorantes remazol azul brillante R (67,5%) y verde malaquita (28,3%) en 24h, siendo que los colorantes azoicos fueran parcialmente decolorados. Se concluye que la melaza de soja es un desecho agroindustrial adecuado para la producción de lacasa de P. sanguineus con potencial para degradación de colorantes.


Subject(s)
Laccase/chemical synthesis , Molasses/supply & distribution , Pycnoporus/enzymology , Glycine max/enzymology
19.
Article in English | IMSEAR | ID: sea-176851

ABSTRACT

In recent years azo functionalized polymeric hydrogels are very interesting; it is due to their promising applications in various fields especially in the colon drug delivery. 4-Hydroxyphenylazo-3-N-(4-hydroxyphenyl) maleimide (HPM) was synthesized and used for development of hydrogels by free radical polymerization with acrylamide (Am) and N,N-methylene bis acrylamide. Synthesized poly(Am-co-HPM) (PAH) hydrogels were used for encapsulation of 5-fluorouracil (5-FU) an anticancer drug. Structural, thermal, morphological and drug distribution of PAH hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction techniques, respectively. Maximum percentage of encapsulation efficiency i.e. 78.25±1.3 was observed for AZ1 PAH hydrogels. 5-FU release studies were performed by in vitro method in simulated gastro intestinal fluids (pH 1.2 & 7.4). To support the 5-FU release mechanism from PAH hydrogels, swelling and deswelling kinetics were studied in doubly distilled water.

20.
Article in English | IMSEAR | ID: sea-169101

ABSTRACT

Benzidine based azo dyes are proven carcinogens, mutagens and have been linked to bladder cancer of human beings and laboratory animals. The textile and dyestuff manufacturing industry are the two major sources for releasing of azo dyes. Various research groups have started work on genotoxic effect of textile dyes in occupational workers of textile dye industry. Bladder cancer is the most common form of cancer in dye industries. Most of people between age 50 and 70 group of are diagnosed with bladder cancer. Men are more likely than the women to develop bladder cancer. Bladder cancer is a disease in which abnormal cells multiply without control in the bladder. The most common type of bladder cancer begins in cells lining the inside of the bladder and is called transitional cell carcinoma. Tumor markers are substances that can be found in the body when cancer is present. They are most often found in the blood or urine. The review deals about the impacts of the industry dyes on human health.

SELECTION OF CITATIONS
SEARCH DETAIL