Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Eng. sanit. ambient ; 26(1): 69-76, jan.-fev. 2021. tab
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1154126

ABSTRACT

RESUMO Rochas contendo sulfetos metálicos podem ser oxidadas em um processo catalisado por procariotos quimiolitoautotróficos ou Fe3+. A atividade mineradora acelera esse processo ao gerar resíduos contendo sulfetos metálicos com grande superfície de contato. O lixiviado resultante, conhecido como drenagem de mina (DM), é rico em sulfato, íons hidrogênio e contaminantes químicos inorgânicos como ferro (Fe), zinco (Zn), cádmio (Cd), manganês (Mn), níquel (Ni), arsênio (As) e alumínio (Al). Para remover tais poluentes, atualmente, o principal tratamento utilizado é a adição de reagentes alcalinos. Entretanto, esse método tem limitada eficiência, alto custo e gera grandes volumes de resíduos sólidos tóxicos de relativa solubilidade. Bactérias redutoras de sulfato (BRS) podem oxidar matéria orgânica com geração de sulfeto. Algumas vias metabólicas do processo consomem H+neutralizando o pH. O sulfeto produzido pode reagir com contaminantes inorgânicos e precipitá-los, permitindo sua recuperação da fase líquida. O uso de subprodutos industriais e urbanos contendo diferentes fontes de carbono como doadores de elétrons no tratamento de DM tem sido investigado. Este artigo sumariza dados sobre as variáveis relevantes para a atividade microbiana durante o tratamento biológico de DM, analisando o atual cenário de pesquisas com fontes alternativas de carbono. Discute-se ainda novas fontes de matéria orgânica ainda não aplicadas para tratamento biológico de efluentes e que, sob aspectos de sustentabilidade, dos pontos de vista sustentável e econômico, podem ser usadas no tratamento de resíduos.


ABSTRACT Rocks containing metal sulfides be can oxidized biologically or chemically. Chemolithoautotrophics prokaryotes and Fe3+ catalyze this process. The mining activities also accelerate the process for creates metal sulphides tailings with a big contact surface. The leached formed is called Mine Drainage (MD) whose composition is rich in sulphate, hydrogen ions and inorganic chemical contaminants such as Fe, Zn, Mn, Cd, Ni, As e Al. Currently, in order to remove these pollutants, the main treatment used is the addition of alkaline reagents. However, the method has limited efficiency, high cost with input reagents and generates wide amounts of toxic solid residues with high solubility. The sulphide reducing bacterias (RSB) can oxidize organic matter generating sulphide. Some metabolic pathways consume H+ neutralizing the pH. The sulphide formed can react and precipitate inorganic pollutants, allowing their recuperation from the liquid phase. The use of industrial and urban by-products containing different carbon sources have been investigated as an electron donor in the MD treatment. The diverse microbial consortia synergic acting can present bigger efficiency in the presence of mixed carbon sources, besides lower cost in relation to the pure matter. Here will be detailed the biological treatment about which and how the variables of the system can influence the microbial activity and relevant molecules to the treatment. After is described the current situation of the research about alternative carbon sources. New carbon sources whose are a by-product of the expanding industry presenting good feature to anaerobic degrading are suggested. The by-product potential is described from the point of view of sustainability, and waste management.

2.
Eng. sanit. ambient ; 25(4): 619-626, jul.-ago. 2020. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1133803

ABSTRACT

RESUMO O controle do crescimento microbiano é um desafio crescente na produção de petróleo e gás, uma vez que a presença de determinadas bactérias traz impactos econômica e ambientalmente negativos. As bactérias redutoras de sulfato (BRS) são particularmente problemáticas, uma vez que são responsáveis pela corrosão biológica ligada à produção de sulfeto de hidrogênio, efeito conhecido como souring. A principal forma de controle das BRS atualmente é a injeção de biocidas, no entanto essa estratégia, além de requerer aplicação contínua, tem se revelado pouco efetiva na eliminação de biofilmes e é associada a um alto risco de contaminação das águas. Portanto, é necessário que se busquem abordagens mais eficientes e específicas em relação ao controle microbiológico. O uso de vírus bacteriófagos vem ao encontro dessas necessidades, pois eles, após se multiplicarem, geralmente provocam a lise celular, liberando novas partículas virais e evitando que a bactéria se prolifere. Diante disso, este estudo propõe estabelecer um método para a concentração e a determinação da eficiência de recuperação de bacteriófagos de BRS presentes em água de reator oriunda de poços de petróleo. As amostras foram coletadas de dois reatores operados em batelada alimentada e que simulam um poço de petróleo. As amostras de água de reator foram primeiramente clarificadas, os vírus eluídos desse sedimento e, em seguida, concentrados por ultracentrifugação. O concentrado viral foi então purificado com Vertrel XF. Ensaios de semeadura experimental de miofago P1 nas amostras de água do reator revelaram taxa de recuperação viral de 27,7%, contra ao 16% obtidos com outros protocolos.


ABSTRACT The control of microbial growth is an increasing challenge in the production of oil and gas, since the presence of certain bacteria has economic and environmental negative impacts. Sulphate reducing bacteria are particularly problematic, since they are responsible for the biological corrosion associated with the production of hydrogen sulfide, an effect known as souring. The main form of control is the use of biocides; however, this strategy, in addition to requiring continuous application, has proven to be ineffective in the elimination of biofilms and is associated with a high risk of water contamination. Therefore, it is necessary to seek more efficient and specific approaches to microbiological control. The use of bacteriophage viruses meets these needs, because after they multiply, they usually cause cell lysis, releasing new viral particles and preventing the bacteria from proliferating. In view of this, this study proposes to establish a method for the concentration and detection of bacteriophages of Sulphate Reducing Bacteria present in reactor water from oil wells. The samples were collected from two reactors, operated in a batch fed to simulate an oil well. The reactor water samples were first clarified, viruses adsorbed to sediment were eluted and then concentrated by ultracentrifugation. The viral concentrate was then purified with Vertrel-XF. Experimental seeding of P1 myophage in water samples from the reactor revealed a viral recovery rate of 27.7%, compared to the 16% obtained by use of other protocols.

3.
Eng. sanit. ambient ; 25(1): 157-165, jan.-fev. 2020. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1090121

ABSTRACT

RESUMO O fosfogesso (FG) é um dos principais subprodutos da produção de ácido fosfórico para fertilizantes. Esse sólido é constituído principalmente de sulfato de cálcio di-hidratado, podendo conter também metais tóxicos e acidez residual (pH 2-3). A disposição em pilhas próximas às usinas é o principal método de disposição, entretanto isso não soluciona os problemas ambientais, uma vez que pode haver lixiviação das pilhas de resíduo pela água da chuva, contaminando o solo e os corpos d'água. Portanto, a disposição do FG é um desafio para a indústria de fertilizantes. O FG pode ser utilizado como fonte de sulfato para a produção de sulfeto em reatores anaeróbios, utilizando bactérias redutoras de sulfato (BRS). O sulfeto gerado pode ser utilizado posteriormente para a produção de enxofre elementar ou usado na precipitação de metais de transição. No presente trabalho, avaliou-se a viabilidade do uso do FG como fonte de sulfato para as BRS em um reator contínuo de leito fluidizado alimentado com glicerol p.a. como substrato, e estudou-se a influência da variável tempo de detenção hidráulica (TDH) real no processo de biorredução do sulfato. Este último foi determinado em 15 ± 2,6 e 9,7 ± 1,2 h, respectivamente, para os valores teóricos de 10 e 8 horas, a partir do uso de cloreto de lítio como traçador. Para a razão DQO/SO4 2- igual a 1,9, obteve-se remoção de sulfato de 73 ± 11 e 75 ± 12%, respectivamente, para os TDHs 15 ± 2,6 e 9,7 ± 1,2 h. As taxas de remoção específicas de sulfato foram de 0,106 ± 0,04 e 0,179 ± 0,07 gSO4 2-/gSSV.d, respectivamente, para os TDHs 15 ± 2,6 e 9,7 ± 1,2 h.


ABSTRACT Phosphogypsum (PG) is one of the major byproducts of phosphoric acid production for fertilizers. It consists mainly of calcium sulfate dihydrate and may also contain toxic metals and residual acidity (pH 2-3). Generally, this waste is disposed in stacks near plants; however, this does not solve the environmental problems as there may be leaching of the waste piles by rainwater, contaminating the soil and water bodies. Therefore, PG disposal is a challenge for the fertilizer industry. This waste can be used as a sulfate source for sulfide production in anaerobic reactors using sulfate-reducing bacteria (SRB). The sulfide generated can be used later for the production of elemental sulfur or used in the precipitation of transition metals. This work evaluated the feasibility of using PG as a sulfate source for SRB in a continuous fluidized-bed reactor fed with glycerol p.a. as carbon source, and the hydraulic retention time (HRT) effect in the sulphate bioreduction process. The latter was determined at 15 ± 2.6 and 9.7 ± 1.2 h, respectively, for the theoretical values of 10 and 8 hours, from the use of lithium chloride as tracer. Sulfate removal at DQO/SO4 2- ratio of 1.9 was 73 ± 11 and 75 ± 12%, respectively, for HRT of 15 ± 2.6 and 9.7 ± 1.2 h. Specific sulfate removal rates were 0.106 ± 0.04 and 0.179 ± 0.07 gSO4 2-/gSSV.d, respectively, for HRT 15 ± 2.6 and 9.7 ± 1.2 h.

SELECTION OF CITATIONS
SEARCH DETAIL