Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 1505-1513, 2023.
Article in Chinese | WPRIM | ID: wpr-1009091

ABSTRACT

OBJECTIVE@#To develop a drug-loaded composite microsphere that can simultaneously release the berberine (BBR) and naringin (NG) to repair infectious bone defects.@*METHODS@#The NG was loaded on mesoporous microspheres (MBG) to obtain the drug-loaded microspheres (NG-MBG). Then the dual drug-loaded compound microspheres (NG-MBG@PDA-BBR) were obtained by wrapping NG-MBG with polydopamine (PDA) and modifying the coated PDA with BBR. The composite microspheres were characterized by scanning electron microscopy, X-ray diffraction, specific surface area and pore volume analyzer, and Fourier transform infrared spectroscopy; the drug loading rate and release of NG and BBR were measured; the colony number was counted and the bacterial inhibition rate was calculated after co-culture with Staphylococcus aureus and Escherichia coli for 12 hours to observe the antibacterial effect; the biocompatibility was evaluated by live/dead cell fluorescence staining and cell counting kit 8 assay after co-culture with rat's BMSCs for 24 and 72 hours, respectively, and the osteogenic property was evaluated by alkaline phosphatase (ALP) staining and alizarin red staining after 7 and 14 days, respectively.@*RESULTS@#NG-MBG@PDA-BBR and three control microspheres (MBG, MBG@PDA, and NG-MBG@PDA) were successfully constructed. Scanning electron microscopy showed that NG-MBG@PDA-BBR had a rough lamellar structure, while MBG had a smooth surface, and MBG@PDA and NG-MBG@PDA had a wrapped agglomeration structure. Specific surface area analysis showed that MBG had a mesoporous structure and had drug-loading potential. Low angle X-ray diffraction showed that NG was successfully loaded on MBG. The X-ray diffraction pattern contrast showed that all groups of microspheres were amorphous. Fourier transform infrared spectroscopy showed that NG and BBR peaks existed in NG-MBG@PDA-BBR. NG-MBG@PDA-BBR had good sustained drug release ability, and NG and BBR had early burst release and late sustained release. NG-MBG@PDA-BBR could inhibit the growth of Staphylococcus aureus and Escherichia coli, and the antibacterial ability was significantly higher than that of MBG, MBG@PDA, and NG-MBG@PDA ( P<0.05). But there was a significant difference in biocompatibility at 72 hours among microspheres ( P<0.05). ALP and alizarin red staining showed that the ALP positive area and the number of calcium nodules in NG-MBG@PDA-BBR were significantly higher than those of MBG and NG-MBG ( P<0.05), and there was no significant difference between NG-MBG@PDA and NG-MBG@PDA ( P>0.05).@*CONCLUSION@#NG-MBG@PDA-BBR have sustained release effects on NG and BBR, indicating that it has ideal dual performance of osteogenesis and antibacterial property.


Subject(s)
Rats , Animals , Osteogenesis , Delayed-Action Preparations/pharmacology , Microspheres , Berberine/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli
2.
Braz. dent. sci ; 22(3): 335-343, 2019. tab
Article in English | BBO, LILACS | ID: biblio-1008849

ABSTRACT

Objective: This study evaluated the wettability and adhesive properties of three different photopolymerized resin-based pulp-capping materials with or without bioactive glass (BAG). Material and Methods: Cylindrical specimens (5 per group) were prepared from photo-polymerized pulp-capping materials (TER-TheraCal LC, BIN-Biner LC, and CAL-CalciPlus LC containing BAG). After surface finishing, contact angle measurements were made (θ)using the sessile drop method and surface free energy was calculated. For shear test, cylindrical acrylic blocks (N = 30) (diameter: 6 mm; height: 1 m) in the center were filled with the pulp-capping materials (N = 10 per group) flattened using a metal spatula and photo-polymerized. The specimens were stored at 37 °C in 100% humidity for 24 h prior to the bonding procedures. An adhesive system (CLEARFIL SE BOND, Kuraray) was applied on the material surfaces and photo-polymerized for 20 s. Then, resin composite material (Filtek Z250, 3M ESPE) was bonded on the substrate materials using translucent plastic molds (internal diameter: 2 mm; height: 2 mm). The specimens were photopolymerized with an LED photo-polymerization unit for 20 s. After polymerization, the specimens were stored at 37 °C, at 100% humidity for 24 h. Shear force was applied at the pulp-capping material and the resin composite interface In a universal testing machine (1 mm/min).Data were analyzed using 1-way ANOVA and Tukey`s tests at the significance level of 0.05. Results: Contact angle values showed significant difference between the 3 materials with group CAL presenting the lowest (35.35 ± 12.89) and group BIN the highest values (74.77 ± 13.56) (p < 0.05). Significantly lower surface energy was observed with BIN (36.22) (p 0.05). Group BIN (9.12 ± 3.45) showed significantly lower (p < 0.05) mean bond strength than those of TER (11.56 ± 5.67) and CAL (12.66 ± 4.34) (p > 0.05). Most of the observed modes of failures in all groups were of mixed type of failures. Conclusion: The bioglass used in Calciplus LC did not adversely affect the wettability, surface energy and adhesive properties. (AU)


Objetivo: Este estudo avaliou as propriedades de molhabilidade e adesivas de três diferentes materiais capeadores pulpares fotopolimerizaveis à base de resina, com ou sem vidro bioativo (BAG). Material e Métodos: Amostras cilíndricas (5 por grupo) foram preparadas a partir de materiais capeadores pulpares fotopolimerizáveis (TER-TheraCal LC, BIN-Biner LC e CAL-CalciPlus LC contendo BAG). Após o acabamento da superfície, as medidas do ângulo de contato foram feitas (θ) usando o método de gota séssil e a energia livre da superfície foi calculada. Para o ensaio de cisalhamento, blocos de acrílico cilíndricos (N = 30) (diâmetro: 6 mm; altura: 1 m) foram preenchidos no centro com os materiais de capeamento pulpar (N = 10 por grupo) achatados usando uma espátula metálica e fotopolimerizados. Os espécimes foram armazenados a 37 ° C em 100% de umidade por 24 h antes dos procedimentos de colagem. Um sistema adesivo (CLEARFIL SE BOND, Kuraray) foi aplicado nas superfícies do material e fotopolimerizado por 20 segundos. Em seguida, o material de resina composta (Filtek Z250, 3M ESPE) foi colado nos materiais do substrato utilizando moldes de plástico translúcido (diâmetro interno: 2 mm; altura: 2 mm). Os espécimes foram fotopolimerizados com um dispositivo de fotopolimerização de LED por 20 s. Após a polimerização, os espécimes foram armazenados a 37 °C, a 100% de umidade por 24 h. A força de cisalhamento foi aplicada no material capeador e na interface da resina composta em uma máquina universal de ensaios (1 mm / min). Os dados foram analisados por meio do teste de ANOVA e teste de Tukey ao nível de significância de 0,05. Resultados: Os valores do ângulo de contato mostraram diferença significativa entre os 3 materiais com o grupo CAL apresentando os menores valores (35,35 ± 12,89) e o grupo BIN os maiores valores (74,77 ± 13,56) (p < 0,05). Uma energia de superfície significativamente menor foi observada com o BIN (36,22) (p 0,05). O grupo BIN (9,12 ± 3,45) apresentou resistência de união média significativamente menor (p 0,05). A maioria dos modos de falhas observados em todos os grupos eram de tipo misto de falhas. Conclusão: O biovidro utilizado no Calciplus LC não afetou negativamente a molhabilidade, energia superficial e propriedades adesivas. (AU)


Subject(s)
Coated Materials, Biocompatible , Shear Strength , Pulp Capping and Pulpectomy Agents
SELECTION OF CITATIONS
SEARCH DETAIL