Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 128-135, 2020.
Article in Chinese | WPRIM | ID: wpr-873259

ABSTRACT

Objective::To explore the feasibility of the rapid identification system(MALDI-Biotyper System) of microorganisms for rapid identification of Pseudomonas aeruginosa and clinical isolation of Staphylococcus aureus. Method::Identification quality control and clinical isolation were conducted for drug resistance of S. aureus by microbial rapid identification system and broth dilution method. The scores of microbial rapid identification system were compared with the MIC value of broth dilution method. The drug resistance of P. aeruginosa was simultaneously identified to determine the accuracy and applicability of the rapid identification system of microorganisms. Result::The scores of the microbial rapid identification system showed that the score of sensitive quality control strain S. aureus was higher than 2.000, and the that of resistant strain of methicillin-resistant S. aureus(methicillin-resistant S. aureus, MRSA)was between 1.700 and 2.000.The score of clinically isolated S. aureus was between 1.700 and 2.000, which suggested the drug resistance and was consistent with the MIC value of the broth dilution method. At the same time, the systemic identification value of the P. aeruginosa, which is independent of the quality control sensitive strain, was greater than 2.000, showing sensitivity and it was a sensitive strain itself, which was consistent with the results. Conclusion::The microbial rapid identification system scoring method can be used for the rapid identification of the drug resistance of S. aureus and P. aeruginosa.

2.
Annals of Laboratory Medicine ; : 531-535, 2017.
Article in English | WPRIM | ID: wpr-224340

ABSTRACT

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, with its accuracy and speed, is widely used for bacterial identification. The ASTA MicroIDSys system (ASTA, Korea) was recently developed for species identification. We compared its performance with that of Bruker Biotyper (Bruker Daltonics, Germany). Microbes were recovered from sputum, urine, and pus samples from patients admitted to a tertiary care hospital in Korea from January to April 2016. Matrix solution (α-cyano-4-hydroxycinnamic acid) was used, and the peptide profiles acquired from the Microflex LT (Bruker Daltonics) and Tinkerbell LT (ASTA) were analyzed by using their respective software. From 5,322 isolates, Bruker Biotyper identified 163 species; fifty species from 4,919 isolates were identified more than 10 times, including Klebsiella pneumoniae (n=571), Acinetobacter baumannii (n=436), Pseudomonas aeruginosa (n=358), Escherichia coli (n=372), Staphylococcus aureus (n=511), S. epidermidis (n=444), Enterococcus faecium (n=262), E. faecalis (n=220), and Candida albicans (n=248). Identical results, confidence scores (≥ 2.0 for Bruker Biotyper), and acceptable scores (≥140 for ASTA MicroIDSys) were obtained for 86.1% of isolates. Of 4,267 isolates, 99.2% showed acceptable scores in both systems. Results from the ASTA MicroIDSys showed good agreement with those from the Bruker Biotyper. The ASTA MicroIDSys could reliably identify clinically important microorganisms.


Subject(s)
Humans , Acinetobacter baumannii , Candida albicans , Enterococcus faecium , Escherichia coli , Klebsiella pneumoniae , Korea , Mass Spectrometry , Pseudomonas aeruginosa , Sputum , Staphylococcus aureus , Suppuration , Tertiary Healthcare
3.
Annals of Laboratory Medicine ; : 223-230, 2017.
Article in English | WPRIM | ID: wpr-57454

ABSTRACT

BACKGROUND: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows rapid and accurate identification of clinical yeast isolates. In-tube formic acid/acetonitrile (FA/ACN) extraction is recommended prior to the analysis with MALDI Biotyper, but the direct on-plate FA extraction is simpler. We compared the Biotyper with the VITEK MS for the identification of various clinically relevant yeast species, focusing on the use of the FA extraction method. METHODS: We analyzed 309 clinical isolates of 42 yeast species (four common Candida species, Cryptococcus neoformans, and 37 uncommon yeast species) using the Biotyper and VITEK MS systems. FA extraction was used initially for all isolates. If ‘no identification' result was obtained following the initial FA extraction, these samples were then retested by using FA (both systems, additive FA) or FA/ACN (Biotyper only, additive FA/ACN) extraction. These results were compared with those obtained by sequence-based identification. RESULTS: Both systems correctly identified all 158 isolates of the four common Candida species after the initial FA extraction. The Biotyper correctly identified 8.7%, 30.4%, and 100% of 23 C. neoformans isolates after performing initial FA, additive FA, and FA/ACN extractions, respectively, while VITEK MS identified all C. neoformans isolates after the initial FA extraction. Both systems had comparable identification rates of 37 uncommon yeast species (128 isolates), following the initial FA (Biotyper, 74.2%; VITEK MS, 73.4%) or additive FA (Biotyper, 82.0%; VITEK MS, 73.4%). CONCLUSIONS: The identification rate of most common and uncommon yeast isolates is comparable between simple FA extraction/Biotyper method and VITEK MS methods, but FA/ACN extraction is necessary for C. neoformans identification by Biotyper.


Subject(s)
Candida , Cryptococcus neoformans , Mass Spectrometry , Methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Yeasts
4.
Journal of Veterinary Science ; : 377-383, 2016.
Article in English | WPRIM | ID: wpr-148730

ABSTRACT

Edwardsiella (E.) ictaluri is a major bacterial pathogen that affects commercially farmed striped catfish (Pangasius hypothalamus) in Vietnam. In a previous study, 19 strains of E. ictaluri collected from striped catfish were biochemically identified with an API-20E system. Here, the same 19 strains were used to assess the ability of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS; applied using a MALDI Biotyper) to conduct rapid, easy and accurate identification of E. ictaluri. MALDI-TOF MS could directly detect the specific peptide patterns of cultured E. ictaluri colonies with high (> 2.0, indicating species-level identification) scores. MALDI Biotyper 3.0 software revealed that all of the strains examined in this study possessed highly similar peptide peak patterns. In addition, electrophoresis (SDS-PAGE) and subsequent immuno-blotting using a specific chicken antibody (IgY) against E. ictaluri revealed that the isolates had highly similar protein profiles and antigenic banding profiles. The results of this study suggest that E. ictaluri isolated from striped catfish in Vietnam have homologous protein compositions. This is important, because it indicates that MALDI-TOF MS analysis could potentially outperform the conventional methods of identifying E. ictaluri.


Subject(s)
Humans , Agriculture , Asian People , Catfishes , Chickens , Edwardsiella ictaluri , Edwardsiella , Electrophoresis , Mass Spectrometry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL