Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Neuroscience Bulletin ; (6): 624-636, 2019.
Article in English | WPRIM | ID: wpr-775414

ABSTRACT

Previous work has demonstrated that the sensitization of spinal neurons and microglia is important in the development of pain behaviors induced by BmK I, a Na channel activator and a major peptide component of the venom of the scorpion Buthus martensi Karsch (BmK). We found that the expression of P2X7 receptors (P2X7Rs) was up-regulated in the ipsilateral spinal dorsal horn after BmK I injection in rats. P2X7R was selectively localized in microglia but not astrocytes or neurons. Similarly, interleukin 1β (IL-1β) was selectively up-regulated in microglia in the spinal dorsal horn after BmK I injection. Intrathecal injection of P2X7R antagonists largely reduced BmK I-induced spontaneous and evoked pain behaviors, and the up-regulation of P2X7R and IL-1β in the spinal cord. These data suggested that the up-regulation of P2X7Rs mediates microglial activation in the spinal dorsal horn, and therefore contributes to the development of BmK I-induced pain.

2.
J. venom. anim. toxins incl. trop. dis ; 21: 42, 31/03/2015. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-954758

ABSTRACT

Background BmK I, a site-3-specific modulator of voltage-gated sodium channels (VGSCs), causes pain and hyperalgesia in rats, while BmK IT2, a site-4-specific modulator of VGSCs, suppresses pain-related responses. A stronger pain-related effect has been previously attributed to Buthus martensi Karsch (BmK) venom, which points out the joint pharmacological effect in the crude venom.Methods In order to detect the joint effect of BmK I and BmK IT2 on ND7-23 cells, the membrane current was measured by whole cell recording. BmK I and BmK IT2 were applied successively and jointly, and the synergistic modulations of VGSCs on ND7-23 cells were detected.Results Larger peak I Na and more negative half-activation voltage were elicited by joint application of BmK I and BmK IT2 than by application of BmK I or BmK IT2 alone. Compared to the control, co-applied BmK I and BmK IT2 also significantly prolonged the time constant of inactivation.Conclusions Our results indicated that site-4 toxin (BmK IT2) could enhance the pharmacological effect induced by site-3 toxin (BmK I), suggesting a stronger effect elicited by both toxins that alone usually exhibit opposite pharmacological effects, which is related to the allosteric interaction between receptor site 3 and site 4. Meanwhile, these results may bring a novel perspective for exploring the underlying mechanisms of scorpion sting-induced pain.(AU)


Subject(s)
Animals , Allosteric Regulation , Scorpion Stings , Hyperalgesia
3.
J. venom. anim. toxins incl. trop. dis ; 21: 1-7, 31/03/2015. graf, tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1484639

ABSTRACT

Background BmK I, a site-3-specific modulator of voltage-gated sodium channels (VGSCs), causes pain and hyperalgesia in rats, while BmK IT2, a site-4-specific modulator of VGSCs, suppresses pain-related responses. A stronger pain-related effect has been previously attributed to Buthus martensi Karsch (BmK) venom, which points out the joint pharmacological effect in the crude venom.Methods In order to detect the joint effect of BmK I and BmK IT2 on ND7-23 cells, the membrane current was measured by whole cell recording. BmK I and BmK IT2 were applied successively and jointly, and the synergistic modulations of VGSCs on ND7-23 cells were detected.Results Larger peak I Na and more negative half-activation voltage were elicited by joint application of BmK I and BmK IT2 than by application of BmK I or BmK IT2 alone. Compared to the control, co-applied BmK I and BmK IT2 also significantly prolonged the time constant of inactivation.Conclusions Our results indicated that site-4 toxin (BmK IT2) could enhance the pharmacological effect induced by site-3 toxin (BmK I), suggesting a stronger effect elicited by both toxins that alone usually exhibit opposite pharmacological effects, which is related to the allosteric interaction between receptor site 3 and site 4. Meanwhile, these results may bring a novel perspective for exploring the underlying mechanisms of scorpion sting-induced pain.


Subject(s)
Animals , Pain , Scorpion Stings , Toxicity Tests/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL