Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Indian J Biochem Biophys ; 2022 Mar; 59(3): 320-330
Article | IMSEAR | ID: sea-221503

ABSTRACT

Phytohormones play critical roles in plant growth and development. Brassinosteroids (BRs) are essential group of phytohormones required for optimum growth of plants and their deficiency causes distinctive dwarf phenotypes in plants. Homeostasis of BRs in plants is maintained by DWARF4 enzyme that mediates multiple 22?-hydroxylation steps in brassinosteroid biosynthesis. Arabidopsis plants over-expressing DWARF4 show increase in inflorescence, number of branches and siliques; thereby increased number of seeds/plant. This suggests that engineering DWARF4 biosynthesis in Brassica plant can be strategized to enhance yield in mustard. In the present study (i) we cloned dwarf4 gene from Arabidopsis using gene specific PCR strategy, (ii) elucidated the three-dimensional structure of DWARF4 protein at molecular level where it revealed presence of four beta sheets and 20 alpha-helices, and (iii) transformed mustard cultivar Pusa Jaikisan with an objective to develop transgenic mustard with enhanced number of siliques. We obtained several putative transgenics with an average transformation efficiency of 3.3%. Molecular characterization with nptII specific primers confirmed presence of transgene in six putative transgenic plants.

2.
Chinese Journal of Biotechnology ; (12): 34-49, 2022.
Article in Chinese | WPRIM | ID: wpr-927691

ABSTRACT

Plant adaptation to adverse environment depends on transmitting the external stress signals into internal signaling pathways, and thus forming a variety of stress response mechanisms during evolution. Brassinosteroids (BRs) is a steroid hormone and widely involved in plant growth, development and stress response. BR is perceived by cell surface receptors, including the receptor brassinosteroid-insensitive 1 (BRI1) and the co-receptor BRI1-associated-kinase 1 (BAK1), which in turn trigger a signaling cascade that leads to the inhibition of BIN2 and activation of BES1/BZR1 transcription factors. BES1/BZR1 can directly regulate the expression of thousands of downstream responsive genes. Studies in the model plant Arabidopsis thaliana have shown that members of BR biosynthesis and signal transduction pathways, particularly protein kinase BIN2 and its downstream transcription factors BES1/BZR1, can be extensively regulated by a variety of environmental factors. In this paper, we summarize recent progresses on how BR biosynthesis and signal transduction are regulated by complex environmental factors, as well as how BR and environmental factors co-regulate crop agronomic traits, cold and salt stress responses.


Subject(s)
Arabidopsis/metabolism , Brassinosteroids/pharmacology , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological
3.
Braz. arch. biol. technol ; 61: e18160679, 2018. tab, graf
Article in English | LILACS | ID: biblio-974110

ABSTRACT

ABSTRACT Heavy metal toxicity in plants lead to accumulation of reactive oxygen species (ROS). Antioxidant enzyme system is also not able to revert altered ROS homeostasis. The present study reports the heavy metal induced ROS toxicity by up-regulating the expression of key antioxidant enzyme genes through Brassinosteroids pre-soaking treatment in radish.


Subject(s)
Oxidative Stress , Brassinosteroids , Antioxidants , Gene Expression , Metals, Heavy
4.
Biol. Res ; 51: 46, 2018. tab, graf
Article in English | LILACS | ID: biblio-983950

ABSTRACT

The negative effects of environmental stresses, such as low temperature, high temperature, salinity, drought, heavy metal stress, and biotic stress significantly decrease crop productivity. Plant hormones are currently being used to induce stress tolerance in a variety of plants. Brassinosteroids (commonly known as BR) are a group of phytohormones that regulate a wide range of biological processes that lead to tolerance of various stresses in plants. BR stimulate BRASSINAZOLE RESISTANCE 1 (BZR1)/BRI1-EMS SUPPRESSOR 1 (BES1), transcription factors that activate thousands of BR-targeted genes. BR regulate antioxidant enzyme activities, chlorophyll contents, photosynthetic capacity, and carbohydrate metabolism to increase plant growth under stress. Mutants with BR defects have shortened root and shoot developments. Exogenous BR application increases the biosynthesis of endogenous hormones such as indole-3-acetic acid, abscisic acid, jasmonic acid, zeatin riboside, brassinosteroids (BR), and isopentenyl adenosine, and gibberellin (GA) and regulates signal transduction pathways to stimulate stress tolerance. This review will describe advancements in knowledge of BR and their roles in response to different stress conditions in plants.


Subject(s)
Stress, Physiological/physiology , Transcription Factors/genetics , Signal Transduction/genetics , Gene Expression Regulation, Plant/genetics , Brassinosteroids/metabolism , Stress, Physiological/genetics , Signal Transduction/physiology , Gene Expression Regulation, Plant/physiology
5.
Indian J Biochem Biophys ; 2010 Dec; 47(6): 378-382
Article in English | IMSEAR | ID: sea-135291

ABSTRACT

Hydrogen peroxide is most stable molecule among reactive oxygen species, which play a vital role in growth and development of plant as signaling molecule at low concentration in response to various abiotic and biotic stresses. Exogenous application of H2O2 is known to induce chilling tolerance in plants. Brassinosteroids are plant steroid hormones known for their anti-stress properties. In this study, effect of exogenous H2O2 on antioxidant defense system of Brassica juncea L. seedlings was investigated in 24-epibrassinolide (24-EBL) treated and untreated seedlings under chilling stress. The surface sterilized seeds of B. juncea L. were germinated in petriplates containing different concentrations of H2O2 alone and in combination with 10-8 M 24-EBL. Chilling treatment (4 ºC) was given to 10-days old seedlings grown in different treatments for 6 h daily up to 3 days. 24 h recovery period was given to chilling treated seedlings by placing at 25ºC ± 2ºC and harvested for antioxidant enzymes on 14th day after sowing (DAS). Treatment of 24-EBL in combination with H2O2 (15 and 20 mM) helped in reducing the toxicity of seed and seedlings due to H2O2 exposure on their germination rate, shoot and root length respectively. 24-EBL treatment at seed and seedling stage helped in alleviating the toxic effect of H2O2 through antioxidant defense system by increasing the activities of various enzymes involved in antioxidant defense system such as catalase (CAT, E.C. 1.11.1.6), ascorbate peroxidase (APOX, E.C. 1.11.1.11), and superoxide dismutase (SOD, E.C. 1.15.1.1). In conclusion, exogenous pretreatment of H2O2 to seeds of B. juncea L. adapted the seedlings to tolerate chilling stress, which was further ameliorated in combination of H2O2 with 24-EBL.


Subject(s)
Acclimatization/drug effects , Acclimatization/physiology , Antioxidants/metabolism , Ascorbate Peroxidases , Brassinosteroids , Catalase/metabolism , Cholestanols/pharmacology , Cold Temperature , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity , Mustard Plant/drug effects , Mustard Plant/enzymology , Peroxidases/metabolism , Seedlings/drug effects , Seedlings/enzymology , Steroids, Heterocyclic/pharmacology , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL