Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Korean Academy of Conservative Dentistry ; : 125-132, 2006.
Article in Korean | WPRIM | ID: wpr-151992

ABSTRACT

This study was conducted to evaluate the insertion depth of Buchanan plugger after shaping by various Ni-Ti rotary files. It was conducted to determine which size of plugger are appropriate, when root canals are shaped with Ni-Ti rotary files and obturated by Continuous wave of condensation technique. Two type of eighty simulated resin blocks were used : J-shaped and straight shaped canal. The simulated canals were instrumented by ProTaper and ProFile. Buchanan pluggers were inserted into the canal, and then the image was recorded to scanner. The distance from the apex of the canal to the plugger tip was measured by image analysis program. Data were analyzed by one-way ANOVA followed by Scheffe's test. The results were as follows 1. In straight canal finished up to ProTaper F2 and F3 file, F and FM pluggers were inserted more than 5 mm short of working length. 2. In J-shaped canal finished up to ProTaper F2 file, F pluggers were inserted more than 5 mm short of working length. Finished up to ProTaper F3 file, F and FM pluggers were inserted more than 5 mm short of working length. 3. In straight and J-shaped canal finished up to ProFile .06/#20 and .06/#25, any of Buchanan plugger could not be inserted more than 5 mm short of working length. These results suggest that canals shaped by ProTaper could be obturated by Continuous wave of condensation technique with F and FM size Buchanan plugger.


Subject(s)
Dental Pulp Cavity
2.
Journal of Korean Academy of Conservative Dentistry ; : 334-340, 2003.
Article in Korean | WPRIM | ID: wpr-111389

ABSTRACT

This study was performed to evaluate the actual temperature rise on the surface of Buchanan plugger using thermocouple. The heat carrier system 'System B Heatsource' (Model 1005, Analytic Technologies, Redmond, WA, USA) and the Buchanan pluggers of F, FM, M and ML sizes are used for this study. The temperature was set to 200degrees C on digital display and the power level on it was set to 10. Five thermocouples were placed in direct contact with the surface of each size of Buchanan's pluggers at 1 mm increments from the tip to the 4 mm length of shank. The heat control spring was touched for 5 seconds, and the temperature rise on the surface of the pluggers were measured at 1 sec intervals for more than 5 seconds with an accuracy of 0.01 using Data Logger. The data were statistically analyzed by one-way ANOVA. The results were as follows. 1. The position at which the temperature peaked was approximately at 1~2 mm far from the tip of Buchanan plugger (p<0.01). 2. The peak temperature was 215.25+/-2.28degrees C in F plugger, 185.94+/-2.19degrees C in FM plugger, 169.51+/-9.12degrees C in M plugger, and 160.79+/-1.27degrees C in ML plugger and the peak temperature was highest in F plugger and followed by, in descending order, FM plugger, M plugger. ML plugger showed the lowest peak temperature (p<0.01). 3. The temperature on the pluggers was decreased with the increase of touching time. This results suggest that the actual temperature on the surface of the pluggers does not correlate well with the temperature set on digital display. Heat concentrates around the tip. The larger plugger reveals lower temperature rise relatively.


Subject(s)
Hot Temperature
3.
Journal of Korean Academy of Conservative Dentistry ; : 370-381, 2002.
Article in Korean | WPRIM | ID: wpr-185187

ABSTRACT

This study was performed to evaluate the temperature rise on various position of the Buchanan plugger, the peak temperature of plugger's type and the temperature change by its touching time of heat control spring. The heat carrier system 'System B'(Model 1005, Analytic Technologies, USA) and the Buchanan's pluggers of F, FM, M and ML sizes are used for this study. The temperature was set to 200degrees C which Dr. Buchanan's "continuous wave of condensation" technique recommended on digital display and the power level on it was set to 10. In order to apply heat on the Buchanan's pluggers, the heat control spring was touched for 1, 2, 3, 4 and 5 seconds respectively. The temperature rise on the surface of the pluggers were measured at 0.5 mm intervals from tip to 20 mm length of shank using the infrared thermography (Radiation Thermometer-IR Temper, NEC San-ei Instruments, Ltd, Japan) and TH31-702 Data capture software program (NEC San-ei Instruments, Ltd, Japan). Data were analyzed using a one way ANOVA followed by Duncan's multiple range test and linear regression test. The results as follows. 1. The position at which temperature peaked was approximately at 0.5 mm to 1.5 mm far from the tip of Buchanan's pluggers (p<0.001). The temperature was constantly decreased toward the shank from the tip of it (p<0.001). 2. When the pluggers were heated over 5 seconds, the peak temperature by time of measurement revealed from 253.3+/-10.5degrees C to 192.1+/-3.3degrees C in a touch for 1 sec, from 218.6+/-5.0degrees C to 179.5+/-4.2degrees C in a touch for 2 sec, from 197.5+/-3.0degrees C to 167.6+/-3.7degrees C in a touch for 3 sec, from 183.7+/-2.5degrees C to 159.8+/-3.6degrees C in a touch for 4 sec and from 164.9+/-2.0degrees C to 158.4+/-1.8degrees C in a touch for 5 sec. A touch for 1 sec showed the highest peak temperature, followed by, in descending order, 2 sec, 3 sec, 4 sec. A touch for 5 sec showed the lowest peak temperature (p<0.001). 3. A each type of pluggers showed different peak temperatures. The peak temperature was the highest in F type and followed by, in descending order, M type, ML type. FM type revealed the lowest peak temperature (p<0.001). The results of this study indicated that pluggers are designed to concentrate heat at around its tip, its actual temperature does not correlate well with the temperature which Buchanan's "continuous wave of condensation" technique recommend, and finally a quick touch of heat control spring for 1sec reveals the highest temperature rise.


Subject(s)
Hot Temperature , Linear Models , Thermography
SELECTION OF CITATIONS
SEARCH DETAIL