Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Acta Pharmaceutica Sinica B ; (6): 2039-2055, 2023.
Article in English | WPRIM | ID: wpr-982846

ABSTRACT

Positive-sense RNA viruses modify intracellular calcium stores, endoplasmic reticulum and Golgi apparatus (Golgi) to generate membranous replication organelles known as viral factories. Viral factories provide a conducive and substantial enclave for essential virus replication via concentrating necessary cellular factors and viral proteins in proximity. Here, we identified the vital role of a broad-spectrum antiviral, peruvoside in limiting the formation of viral factories. Mechanistically, we revealed the pleiotropic cellular effect of Src and PLC kinase signaling via cyclin-dependent kinase 1 signaling leads to Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1) phosphorylation and Golgi vesiculation by peruvoside treatment. The ramification of GBF1 phosphorylation fosters GBF1 deprivation consequentially activating downstream antiviral signaling by dampening viral factories formation. Further investigation showed signaling of ERK1/2 pathway via cyclin-dependent kinase 1 activation leading to GBF1 phosphorylation at Threonine 1337 (T1337). We also showed 100% of protection in peruvoside-treated mouse model with a significant reduction in viral titre and without measurable cytotoxicity in serum. These findings highlight the importance of dissecting the broad-spectrum antiviral therapeutics mechanism and pave the way for consideration of peruvoside, host-directed antivirals for positive-sense RNA virus-mediated disease, in the interim where no vaccine is available.

2.
Experimental & Molecular Medicine ; : 79-83, 2000.
Article in English | WPRIM | ID: wpr-75100

ABSTRACT

Cyclin-dependent kinase inhibitors (CDKI) are negative regulators of cell cycle progression by binding the cyclin-CDK complex and inhibiting the CDK activity. Genetic alteration in the CDKI genes has been implicated for carcinogenesis. To test the genetic alteration in the p27 and p57 genes, KIP family CDKI genes, 30 gastric tumor-normal pairs and 8 gastric cancer cell lines were analyzed for mutations by polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP). No mutation was detected in these genes although length polymorphisms in the proline-alanine repeat of the p57 gene were detected. When the p27 and p57 mRNAs were analyzed in gastric cancer cell lines by RT-PCR, the p27 mRNA was expressed considerably high in tumor cells but expression of the p57 mRNA was much low in gastric cancer cell lines compared to that of normal cells. The result suggests that inactivation of gene expression rather than mutations in the p57 gene accounts possibly for the involvement of this gene in tumorigenesis of gastric cancer. However, expression of the p27 gene seems to be essential for cell survival.


Subject(s)
Humans , Cyclin-Dependent Kinases/antagonists & inhibitors , DNA Mutational Analysis , DNA, Neoplasm/analysis , Enzyme Inhibitors , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Polymorphism, Single-Stranded Conformational , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/analysis , Reverse Transcriptase Polymerase Chain Reaction , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL