Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Biosci. j. (Online) ; 37: e37021, Jan.-Dec. 2021. graf
Article in English | LILACS | ID: biblio-1359538

ABSTRACT

Cellulase has myriad applications in various sectors like pharmaceuticals, textile, detergents, animal feed and bioethanol production, etc. The current study focuses on the isolation, screening and optimization of fungal strain through one factor at a time technique for enhanced cellulase production. In current study sixteen different fungal cultures were isolated and the culture which quantitatively exhibits higher titers of cellulase activity was identified both morphologically and molecularly by 18S rDNA and designated as Aspergillus niger ABT11. Different parameters like fermentation medium, volume, temperature, pH and nutritional components were optimized. The highest CMCase and FPase activities was achieved in 100ml of M5 medium in the presence of 1% lactose and sodium nitrate at 30 oC, pH5 after 72 hours. The result revealed A. niger can be a potential candidate for scale up studies.


Subject(s)
Aspergillus niger , Cellulase , Fermentation
2.
Indian J Exp Biol ; 2016 Aug; 54(8): 518-524
Article in English | IMSEAR | ID: sea-178798

ABSTRACT

A successful lignocellulosic ethanol production process needs to address the technological impediments such as cost-competitiveness and sustainability of the process. Effective biomass utilization requires a repertoire of enzymes including various accessory enzymes. Developing an enzyme preparation with defined hydrolytic activities can circumvent the need for supplementing cellulases with accessory enzymes for enhanced hydrolysis. With this objective, mixture design approach was used in the present study to enhance glycoside hydrolase production of a fungal isolate, Aspergillus terreus CM20, by determining the proportion of different lignocellulosic components as enzyme inducers in the culture medium. A mixture of paddy straw and wheat straw (1.42:1.58) resulted in improved cellulolytic activities. The precipitated crude enzyme showed higher CMCase (365.03 18 IU g-1), FPase (161.48 IU g-1), avicelase (15.46 IU g-1), β-glucosidase (920.92 IU g-1) and xylanase (9627.79 IU g-1) activities. The potential of the crude enzyme for saccharification of alkali pretreated paddy straw was also tested. Under optimum conditions, saccharification released 25.0 g L-1 of fermentable sugars. This indicates the superiority of the crude enzyme produced with respect to its hydrolytic enzyme components.

3.
Electron. j. biotechnol ; 16(5): 9-9, Sept. 2013. ilus, tab
Article in English | LILACS | ID: lil-690469

ABSTRACT

Background: Enzyme production by solid state bioprocess (SSB) using residues as substrate for microorganisms is an alternative for costs reduction and to avoid their disposal into environment. The aim of this work was to evaluate the physiology of the fungus Lichtheimia ramosa in terms of microbial growth and production of amylases, β-glucosidases, carboxymethylcellulase (CMCase), and xylanases, via SSB, utilizing wastes of the Brazilian savannah fruits bocaiuva (Acrocomia aculeata), guavira (Campomanesia pubescens) and pequi (Caryocar brasiliense) as substrate at different temperatures (25, 30, and 35ºC) during 168 hrs. Results: Samples were taken every 24 hrs, which resulted in 8-points kinetic experiments to determine microbiological and enzymatic contents. The best substrate for β-glucosidase activity was pequi waste after 48 hrs at 30ºC (0.061 U/mL). For amylase activity, bocaiuva presented itself as the best substrate after 96 hrs at 30ºC (0.925 U/mL). CMCase activity was higher in guavira waste after 96 hrs at 35ºC (0.787 U/mL). However, the activity was more expressive for xylanase in substrate composed of bocaiuva residue after 144 hrs at 35ºC (1.802 U/mL). Conclusions: It was concluded that best growth condition for L. ramosa is at 35ºC for all substrates and that xylanase is the enzyme with more potential in SSB, considering the studied Brazilian savannah fruit wastes.


Subject(s)
Xylosidases/metabolism , Cellulases/metabolism , Amylases/metabolism , Mucorales/enzymology , Waste Products , Brazil , Bioreactors , Fruit , Mucorales/growth & development
4.
Braz. j. microbiol ; 43(1): 1-11, Jan.-Mar. 2012. ilus, tab
Article in English | LILACS | ID: lil-622785

ABSTRACT

Physiological studies were conducted to determine the optimum cultural conditions for maximal carboxymethyl cellulase (CMCase) formation by Aspergillus terreus DSM 826. Shaking condition at 150 rpm is favorable for the production of CMCase from rice straw and sugar cane bagasse. The highest enzyme yield was obtained at the third day of incubation at 30ºC for both cases; however CMCase formation occurred at a broad range of pH values, with maximal formation of A. terreus DSM 826 CMCase at pH 4.5 and 5.0 when rice straw and sugar cane bagasse were used as sole carbon source, respectively. Carboxymethyl cellulose (CMC) was found to be a good inducer for CMCase formation in both agricultural wastes with CMC concentrations of 0.5 and 1.0 % (w/v) in case of rice straw and sugar cane bagasse, respectively. High level of enzyme formation was obtained with the addition of ammonium chloride as nitrogen source in both cases and at a concentration of 0.4 % (v/v Tween-80) as an addition to medium containing rice straw. However this addition did not influence the production of CMCase in case of using sugar cane bagasse as carbon source.


Subject(s)
Aspergillus/isolation & purification , Carboxymethylcellulose Sodium/analysis , Carboxymethylcellulose Sodium/isolation & purification , Plant Structures/enzymology , Oryza/enzymology , Saccharum/enzymology , Enzyme Activation , Food Samples , Methodology as a Subject
5.
Malaysian Journal of Microbiology ; : 97-103, 2012.
Article in English | WPRIM | ID: wpr-625639

ABSTRACT

Aims: The escalating demands for traditional fossil fuels with unsecured deliverance and issues of climate change compel the researchers to develop alternative fuels like bioethanol. This study examines the prospect of biofuel production from high carbohydrate containing lignocellulosic material, e.g. sugarcane bagasse through biological means. Methodology and Results: Cellulolytic enzymes were collected from the culture filtrate of thermotolerant Trichoderma viride grown on variously pre-treated sugarcane bagasse. CMCase and FPase enzyme activities were determined as a measure of suitable substrate pre-treatment and optimum condition for cellulolytic enzyme production. The highest CMCase and FPase activity was found to be 1.217 U/ml and 0.109 U/ml respectively under the production conditions of 200 rpm, pH 4.0 and 50 °C using steamed NaOH treated bagasse as substrate. SEM was carried out to compare and confirm the activity of cellulolytic enzymes on sugarcane bagasse. Saccharification of pre-treated bagasse was carried out with crude enzymes together using a two-factor experimental design. Under optimized conditions the pre-treated bagasse was saccharified up to 42.7 % in 24 h. The hydrolysate was concentrated by heating to suitable concentration and then used for fermentation by an indigenous isolate of Saccharomyces cerevisiae. With 50 and 80 % brix containing liquor the concentration of alcohol was 0.579 % and 1.15 % respectively. Conclusion, significance and impact of study: This is the first report in Bangladesh for the production of cellulosic ethanol using local isolates. Though the rate of alcohol production was very low, a great impetus in this field can maximize the production thereby meet the demand for fuel in future.

6.
Malaysian Journal of Microbiology ; : 210-216, 2011.
Article in English | WPRIM | ID: wpr-627035

ABSTRACT

A total of 245 yeast isolates from Gunung Halimun National Park (GHNP) were screened for cellulolytic activity using 0.2% cellulose-azure. The results showed that 16 isolates have cellulolytic activity using cellulose-azure assay. These isolates were further screened for carboxymethyl cellulase (CMCase), avicelase and cellobiase using specific substrates (carboxymethyl cellulosa, avicel and cellobiose) with Teather and Wood method. The results showed that 7 isolates have CMCase; 6 isolates have cellobiase; 2 isolates have CMCase and cellobiase; and 1 isolate has CMCase and avicelase and cellobiase activities. Isolate S 4121 has the highest CMCase activity and identified as Trichosporon sporotrichoides (van Oorschot) van Oorschot and de Hoog UICC Y-286.

7.
Braz. j. microbiol ; 39(1): 122-127, Jan.-Mar. 2008. graf, tab
Article in English | LILACS | ID: lil-480687

ABSTRACT

Cellulase is a complex enzyme system, commercially produced by filamentous fungi under solid-state and submerged cultivation. It has wide applicability in textile, food and beverage industry for effective saccharification process. In this study, cellulolytic enzyme activity, particularly endoglucanase of 26 Streptomyces strains isolated from garden soil was examined, including two isolates selected on the basis of potential cellulolytic activity on Bennett's agar medium. To enhance the endoglucanase formation in broth culture, different conditions including carbon and nitrogen sources, and growth conditions were tested. The maximum endoglucanase activity (11.25-11.90 U/mL) was achieved within 72-88 h in fermentation medium containing Tween-80, followed by phosphate sources. Both cellulolytic Streptomyces isolates gave almost equal quantity of enzyme in all trials. However the effect of medium ingredients on endoglucanase induction diverged with strains in some extent.


A celulase é um sistema enzimático complexo, produzido comercialmente a partir de fungos filamentosos através de cultivo em estádio sólido e submerso. Tem uma grande aplicação na indústria têxtil e de alimentos e bebidas no processo de sacarificação. Nesse estudo, examinou-se a atividade celulolítica, especialmente de englucanase, de 26 cepas de Streptomyces isoladas de solo, incluindo duas cepas selecionadas por sua atividade celulolítica no ágar Bennett. Para estimular a produção de englucanase em meio de cultura, diferentes condições de cultivo, incluindo fonte de carbono e nitrogênio e condições de crescimento, foram avaliadas. A atividade máxima de glucanase (11,25 a 11,90 U/mL) foi obtida em 72-88h em meio de cultura contendo Tween-80, seguido por fontes de fosfato. Ambas as cepas celulolíticas de Streptomyces produziram quase a mesma quantidade de enzima em todos os experimentos. Entretanto, o efeito dos ingredientes do meio na indução da glucanase divergiu de acordo com a cepa.


Subject(s)
Clinical Enzyme Tests , Cellulases/analysis , Fungi/enzymology , Fungi/isolation & purification , In Vitro Techniques , Culture Media/isolation & purification , Streptomyces/enzymology , Streptomyces/isolation & purification , Fermentation , Methods , Soil , Textile Industry
8.
Braz. arch. biol. technol ; 51(1): 35-41, Jan.-Feb. 2008. tab
Article in English | LILACS | ID: lil-482051

ABSTRACT

The aim of this study was to evaluate the interaction effects of the physico-chemical parameters on the endoglucanase (CMCase) production by Trichoderma reesei Rut C30 on a cellulosic agro-residue by the solid-state fermentation (SSF) and to determine their optimum values by the EVOP factorial design technique. The best combination of physical parameters for the maximum production of the endoglucanase (CMCase) was 28ºC temperature, 79 percent relative humidity and 4.8 pH of the medium. The best combination of the chemical parameters was (mg/L) nicotinic acid 15, naphthalene acetic acid 7, ferric chloride 5 and Tween-80 6. With the application of this technique, the yield of the CMCase increased by ~ 2.3 fold.

9.
Microbiology ; (12)1992.
Article in Chinese | WPRIM | ID: wpr-685544

ABSTRACT

A novel Aspergillus terreus strain M11 was isolated from the compost containing cellulose and identified. The isolate grow best at 45℃ and pH2.0. It was found that the activity of the CMCase was up to 3.680IU/mL with high heat stability and the optimal reaction conditions of the CMCase were at 60℃ and pH2.0.

10.
Microbiology ; (12)1992.
Article in Chinese | WPRIM | ID: wpr-685004

ABSTRACT

Fermentation condition optimization of P. decumbens Ju-A10 for production of CMCase using three kinds of plant cellulosic wastes as carbon sources was made using RSA method. The result was that CMCase was the highest when the level of carbon source was 9. 77 % , 8. 69 % and 9. 97% , and liquid volume was 64. 7 mL, 54. 2 mL, 40. 8 mL for carbon sources of millet straw, wheat straw and paper sludge, respectively. The value of CMCase was 29. 26IU/mL, 29. 14 IU/mL, 29. 81 IU/mL, respectively, in the above cases. The value of R2 is 0. 9117 , 0. 9246, 0. 8655 , respectively. It could be concluded that the fermentation models were quite reliable. The method can be applied in optimization of fungi fermentation medium.

SELECTION OF CITATIONS
SEARCH DETAIL