Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 18(6): 471-479, Nov. 2015. graf, tab
Article in English | LILACS | ID: lil-772293

ABSTRACT

Background This study investigated the potential application of two biosurfactants for enhanced removal capability and biodegradation of motor oil contaminated sand under laboratory conditions. The biosurfactants were produced by the yeast Candida sphaerica and by the bacterium Bacillus sp. cultivated in low-cost substrates. The ability of removing motor oil from soil by the two biosurfactants was identified and compared with that of the synthetic surfactants Tween 80 and Triton X-100. Results Both crude and isolated biosurfactants showed excellent effectiveness on motor oil removal from contaminated sand under kinetic conditions (70-90%), while the synthetic surfactants removed between 55 and 80% of the oil. A contact time of 5-10 min under agitation seemed to be enough for oil removal with the biosurfactants and synthetic surfactants tested. The crude and the isolated biosurfactant from C. sphaerica were able to remove high percentages of motor oil from packed columns (around 90%) when compared to the biosurfactant from Bacillus sp. (40%). For the degradation experiments conducted in motor oil contaminated sand enriched with sugar cane molasses, however, oil degradation reached almost 100% after 90 d in the presence of Bacillus sp. cells, while the percentage of oil degradation did not exceed 50% in the presence of C. sphaerica. The presence of the biosurfactants increased the degradation rate in 10-20%, especially during the first 45 d, indicating that biosurfactants acted as efficient enhancers for hydrocarbon biodegradation. Conclusions The results indicated the biosurfactants enhancing capability on both removal and rate of motor oil biodegradation in soil systems.


Subject(s)
Soil Pollutants , Surface-Active Agents , Biodegradation, Environmental , Petroleum , Bacillus , Yeasts , Candida , Environmental Restoration and Remediation , Sand
2.
Electron. j. biotechnol ; 16(4): 4-4, July 2013. ilus, tab
Article in English | LILACS | ID: lil-684019

ABSTRACT

Background: The aim of the present study was to propose a low-cost method for the production of a biosurfactant by the yeast Candida sphaerica and assess its toxicity and phytotoxicity. The medium was formulated with distilled water supplemented with residue from a soy oil refinery (5%) and corn steep liquor (2.5%) as substrates. These two products were the sources of carbon and nitrogen as well as mineral elements to encourage the growth of the microorganism and production of a biosurfactant. Results: The isolated biosurfactant yield was 6.364 g/l. The biosurfactant exhibited an excellent ability to reduce surface tension (26 mN/m) and demonstrated no toxicity against seeds of Brassica oleracea, Chicoria intybus and Solanum gilo or the micro crustacean Artemia salina employed as a bioindicator. The biosurfactant exhibited no antimicrobial activity against the fungi and bacteria tested. Conclusions: The promising results obtained in this study indicate the feasibility of producing biosurfactants from powerful non-toxic organic residues and their application in the bioremediation of contaminated soil and water.


Subject(s)
Surface-Active Agents/toxicity , Candida/metabolism , Surface-Active Agents/isolation & purification , Kinetics , Bioreactors , Culture Media , Industrial Waste
SELECTION OF CITATIONS
SEARCH DETAIL