Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add filters








Year range
1.
Braz. j. biol ; 842024.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469280

ABSTRACT

Abstract Land use and land cover change are affecting the global environment and ecosystems of the different biospheres. Monitoring, reporting and verification (MRV) of these changes is of utmost importance as they often results in several global environmental consequences such as land degradation, mass erosion, habitat deterioration as well as micro and macro climate of the regions. The advance technologies like remote sensing (RS) and geographical information system (GIS) are helpful in determining/ identifying these changes. In the current study area, changes in carbon stocks, notably in forest areas, are resulting in considerable dynamics of carbon stocks as a result of climate change and carbon sequestration. This study was carried out in the Diamer district of the Gilgit Baltistan (GB) Pakistan to investigate the change in cover change/land use change (particularly Forest Land use) as well as carbon sequestration potential of the forests in the district during almost last 25years. The land cover, temporal Landsat data (level 1, LIT) were downloaded from the USGS EROS (2016), for 1979-1989, 1990-2000 and 2001-2012. Change in land uses, particularly forest cover was investigated using GIS techniques. Forest inventory was carried out using random sampling techniques. A standard plot of size 0.1 ha (n=80) was laid out to determine the tree density, volume, biomass and C stocks. Simulation of C stocks was accomplished by application of the CO2FIX model with the data input from inventory. Results showed a decrease in both forest and snow cover in the region from 1979-2012. Similarly decrease was seen in tree volume, tree Biomass, dynamics of C Stocks and decrease was in occur tree density respectively. It is recommended we need further more like project such as BTAP (Billion Tree Afforestation Project) and green Pakistan project to increase the forest cover, to control on land use change, protect forest ecosystem and to protect snow cover.


Resumo O uso e as mudanças na cobertura da terra estão afetando o meio ambiente global e os ecossistemas das diferentes biosferas. O monitoramento, relatório e verificação (MRV) dessas mudanças são de extrema importância, pois muitas vezes resultam em várias consequências ambientais globais, como degradação da terra, erosão em massa, deterioração do hábitat, bem como micro e macroclima das regiões. As tecnologias avançadas, como sensoriamento remoto (RS) e sistema de informações geográficas (SIG), são úteis para determinar / identificar essas mudanças. Na área de estudo atual, as mudanças nos estoques de carbono, principalmente em áreas florestais, estão resultando em uma dinâmica considerável dos estoques de carbono como resultado das mudanças climáticas e do sequestro de carbono. Este estudo foi realizado no distrito de Diamer de Gilgit Baltistan (GB), Paquistão, para investigar a mudança na mudança de cobertura / mudança de uso da terra (particularmente uso de terras florestais), bem como o potencial de sequestro de carbono das florestas no distrito durante quase os últimos 25 anos. A cobertura da terra, os dados temporais do Landsat (nível 1, LIT), foram baixados do USGS EROS (2016), para 1979-1989, 1990-2000 e 2001-2012. Mudanças nos usos da terra, particularmente na cobertura florestal, foram investigadas usando técnicas de SIG. O inventário florestal foi realizado por meio de técnicas de amostragem aleatória. Um lote padrão de 0,1 ha (n = 80) foi estabelecido para determinar a densidade das árvores, volume, biomassa e estoques de C. A simulação dos estoques de C foi realizada pela aplicação do modelo CO2FIX com a entrada de dados do inventário. Os resultados mostraram uma diminuição na cobertura florestal e de neve na região de 1979 a 2012. Da mesma forma, diminuição foi observada no volume da árvore, biomassa das árvores, dinâmica dos estoques de C e diminuição na densidade das árvores, respectivamente. É recomendado que precisemos de mais projetos como o BTAP (Billion Tree Afforestation Project) e o projeto Green Pakistan para aumentar a cobertura florestal, controlar as mudanças no uso da terra, proteger o ecossistema florestal e proteger a cobertura de neve.

2.
Article | IMSEAR | ID: sea-219652

ABSTRACT

Genetically modified crop (GMC) is a technology which includes transferring Deoxyribonucleic acid (DNA) in plant cells. On the other hand, Hybrid Crops are naturally occurring crops but it also involves manmade crosses to have at least 15-20% higher yield potential over high yielding inbred crop varieties using almost the same level of inputs and also can perform better even under unfavourable environments like drought and saline condition. These days, hybrid crops are one of the most commonly consumed foods for humans. In line with this GM crops have high yield potential and adaptive capability under wide range of environments even under fragile ecosystems. There are different aspects of both these types of crops. Human consumption of these crops has been a highly debatable topic in recent times. In this study, a brief discussion on GM crops and hybrid crops will be presented. Additionally, a comparison between them, in terms of health and productivity, will also be discussed.

3.
Indian J Exp Biol ; 2022 Mar; 60(3): 207-214
Article | IMSEAR | ID: sea-222473

ABSTRACT

Conservation tillage has proven advantageous in improving soil health and productivity. However, the greenhouse gases (GHGs) emission and intensity from different conservation tillage and nutrient management systems under Indian conditions are less understood. Therefore, here, we compared the effect of tillage and nutrient management on GHGs emissions, net global warming potential (NGWP), and greenhouse gas intensity (GHGI) from a field experiment under five years in a soybean-wheat cropping system in the Vertisols. The tillage treatments comprised of reduced tillage (RT) and no tillage (NT). The three nutrient management treatments included application of 100% NPK (T1), 100% NPK + 1.0 Mg FYM-C ha-1 (T2), 100% NPK +2.0 Mg FYM-C ha-1 (T3). The results showed significantly higher SOC sequestration under NT (1388 kg ha-1 yr-1) followed byRT (1134 kg ha-1 yr-1) with application of FYM (2.0 Mg C ha-1) (T3) every year. Across tillage, integrated nutrient management(T2 and T3) lowered NGWP and GHGI compared to NPK (T1). The GHGI of NT system was less by 33% compared to RT. The results suggest that GHGs mitigation and sustained food production in the soybean-wheat system can be achieved in NT and RT with integrated use of organic and inorganic fertilizer as the major component of nutrient management.

4.
J Environ Biol ; 2020 Jul; 41(4): 770-775
Article | IMSEAR | ID: sea-214541

ABSTRACT

Aim: The present study aimed to estimate the total carbon sequestration potential of a 20-years-old teak (Tectona grandis) plantation forest spread over an area of 23 ha (in Odisha under Eastern Ghats stretch) through analysis of above ground and below ground biomass carbon of trees and soil organic carbon (SOC) stock.Methodology: The sampling was carried out during May to July 2017. Random non-destructive quadrate method was used for vegetation analysis. Based on the girth, height, basal area and bio volume of trees, the above ground carbon (AGC), below ground carbon (BGC) and total carbon storage in biomass (CSB) of teak plantation forest was calculated. Similarly, soil samples were taken by a soil core sampler at different depths and based on their organic carbon, bulk density, stone and gravel contents, soil organic carbon (SOC) stocks of soil was calculated. Results: The total SOC stock and CSB of the entire teak plantation forest was 489.21 t and 6670 t, respectively, across an area of 23 ha. Taking two carbon pools into account, the total carbon sequestration (TCS) of teak plantation forest patch was 7159.21 t, which arrived to be 311.27 t ha-1 with AGC of 230.16 t ha-1 and BGC of 59.84 t ha-1 and TOC stock of 21.27 t ha-1. The highest contribution in terms of carbon storage was established by above ground carbon (74%) followed by below ground carbon (19%) and SOC (7%). Interpretation: The current study reflects that teak plantation forest has rich potential of carbon sequestration not only in tree biomass but also in the SOC form and this plantation can act as a potent reservoir of carbon in the Eastern Ghats of India

5.
Article | IMSEAR | ID: sea-204878

ABSTRACT

Nearly one billion hectares of arid and semiarid areas of the world are salt affected and remain barren due to salinity or water scarcity. These lands can be utilized by adopting appropriate planting techniques and integrating trees with tolerant crops, forage grasses, oil yielding crops, aromatic and medicinal plants. Biosaline agroforestry provides various ecosystem services such as the improved soil fertility, carbon sequestration, and biomass production. Provisioning services relating to biomass production have been well studied in different biosaline agroforestry. Tree plantations and agroforestry enrich the soil in organic matter and exert a considerable ameliorative effect on soil properties. The soil microbial biomass serves as a useful indicator of soil improvement under salt stress. By integrating trees with the naturally occurring grassland systems on highly sodic soils, the soil organic carbon content increased from 5.3 Mg ha−1 (in sole grass) to 13.6, 10.9, and 14.2 Mg ha−1, when Dalbergia sissoo, Acacia nilotica, and Prosopis juliflora trees were introduced with grass. The strip-plantations of clonal Eucalyptus tereticornis sequestered 15.5 t ha–1 carbons during the first rotation of 5 years and 4 months. The soils of biosaline agroforestry could store 25.9–99.3 Mg C ha−1 in surface 0.3 m soil. Maintaining the stores and sink of carbon in agroforestry could play a key role in climate change mitigation as well as help in adaption changing environmental conditions.

6.
Rev. biol. trop ; 67(4)sept. 2019.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1507560

ABSTRACT

Este artículo es una revisión bibliográfica sobre las funciones ecológicas que caracterizan a los bambúes, por las cuales merecen un mayor reconocimiento e inclusión en los programas de restauración ecológica. Los bambúes son un grupo de plantas muy diverso, de amplia distribución geográfica y económicamente importante. Aunque son más reconocidos por los usos comerciales, su potencial de uso en programas de restauración ecológica es prometedor, ya que pueden ser eficientes en la prestación de varios servicios ambientales relacionados con el suelo, el agua y el secuestro de carbono. Su rápido crecimiento, junto con su capacidad para controlar la erosión y mantener el agua a nivel del suelo, así como para proporcionar nutrientes mediante la descomposición de la hojarasca, convierte a los bambúes en un grupo valioso para la recuperación de áreas degradadas y para la restauración productiva de ecosistemas, en particular a través de sistemas agroforestales. Los enfoques agroforestales pueden combinar diferentes especies de bambú con otros cultivos, para satisfacer las necesidades humanas y generar a la vez beneficios para los ecosistemas. De manera similar, los bosques o plantaciones de bambúes, junto con sistemas agroforestales mixtos, pueden actuar como áreas de conexión y corredores biológicos, en paisajes muy fragmentados, proporcionando refugio y alimento para una amplia diversidad de organismos. A pesar de las percepciones de que los bambúes pueden ser invasivos, las pruebas para apoyar esto son limitadas. Recomendamos una evaluación cuidadosa de las características biológicas de las especies de bambúes seleccionadas, antes de su implementación en proyectos de restauración productiva y de recuperación de los servicios ambientales.


This article is a bibliographic review on the ecological functions that distinguish bamboos, for which they deserve greater recognition and inclusion in ecological restoration programs. Bamboos are a highly diverse, geographically widespread and economically important plant group. Although they are more recognized by commercial uses, their potential for use in ecological restoration programs is promising, as they can be effective in delivery of several environmental services related to soil, water and carbon sequestration. Their rapid growth, along with their abilities to control erosion and maintain water at soil level, as well as provide nutrients by litterfall decomposition, make them a valuable group for recovery of degraded areas and in productive restoration of ecosystems, in particular via agroforestry systems. Agroforestry approaches can combine different bamboo species with other crops, to meet human needs while generating benefits for ecosystems. Similarly, bamboo forests or plantations together with mixed agroforestry systems can act as stepping-stones and biological corridors, in very fragmented landscapes by providing shelter and food for a wide diversity of organisms. Despite perceptions that bamboos can be invasive, evidence to support this is limited. We recommend careful evaluation of the biological characteristics of bamboo species selected, prior to deployment in productive restoration projects and for the recovery of environmental services.

7.
Article in English | IMSEAR | ID: sea-175817

ABSTRACT

Aim: Climate change is becoming one of the major global environment concerns. The earth’s climate is predicted to change due to release of greenhouse gases and there is an urgent need for stabilizing the increasing levels of carbon dioxide in atmosphere. Soil carbon sequestration is considered as one of the promising options for mitigating the climate change impacts. The aim of the current study is to assess the carbon sequestration potential of the crops of the agricultural importance at elevated levels of CO2 in designed plant growth chamber. Place and Duration of Study: School of Environment and Sustainable Development, Central University of Gujarat, India, between November 2013 to June 2014. Methodology: Plant growth chamber has been designed of dimension 66×24×25 inches for assessing the carbon sequestration potential of the selected agricultural crops Triticum aestivum, Sorghum vulgare and Vigna radiata in green house. The plants were grown using the pot culture technique in mycorrhizal soil. The CO2 was induced into the plant growth chamber after every five days at the rate of 5 Litres per minute to maintain the level of carbon dioxide upto 500±50 ppm into the plant growth chamber and plant’s growth was studied. Soil’s physico-chemical parameters, plant’s morphological and biochemical characteristics were studied in each plant. Results: The study reveals the carbon content estimated in the form of organic carbon, total carbon and organic matter was high in Vigna radiata at elevated CO2 levels, than ambient levels, followed by Sorghum vulagare and Triticum aestivum. Also organic nitrogen accumulation was increased in response of elevated CO2 conditions, highest being found in samples of Vigna radiata. Morphological and biochemical characteristics of crops also got influenced under elevated CO2 levels. Plant height and plant biomass accumulation was found to be higher in Triticum aestivum, followed by Sorghum vulgare and Vigna radiata, whereas shoot and root length was measured to be highest in Sorghum vulgare, then in Vigna radiata and Triticum aestivum. Biochemical analysis revealed that total chlorophyll content was highest in Sorghum vulgare as compared to other two species at elevated conditions. Protein content increased in response to elevated CO2 conditions, it was found to be highest in Triticum aestivum. Conclusion: It can be inferred from this study that CO2 has influence on both soil’s and properties of plant’s growing in it. It was observed that C3 crops Triticum aestivum and Vigna radiata were more efficient in using the elevated carbon dioxide levels and hence will prove useful in mitigating the impacts of climate change with the help of sequestration of carbon both in plant and soil. Sorghum vulgare being a C4 also showed potential for carbon sequestration and can be considered for the same after further more research.

8.
Article in English | IMSEAR | ID: sea-162598

ABSTRACT

Aims: To determine whether addition of inorganic nitrogen (N) directly to maize litter (stalk and leaf) with differing tissue quality impacts litter and soil organic matter (SOM) decomposition. We tested whether N addition leads to 1) faster litter decomposition, 2) less SOM-C decomposition and 3) increased incorporation of organic-C into soil-C fractions thereby increasing C sequestration potential in maize-based systems. Methodology: We investigated decomposition of two types of maize litter (stalk and leaf) with differing tissue quality both in the field and in a laboratory incubation experiment. In the field, litter was placed on the soil surface and at 10 cm soil depth to investigate the effect of litter burial and N addition on litter decomposition. Litter was harvested at six and twelve month intervals. In the incubation experiment, maize and stalk litter was ground and incorporated into the soil and incubated at 25ºC for 120 days. We measured CO2-C evolved and employed δ13C natural abundance differences between litter-C and SOM-C to measure both litter-C and SOM-C decomposition. At the end of the experiment, we examined soil-C storage via soil physical fractionation. Results: Exogenous N addition to litter had little effect both litter and SOM decomposition in the field and the laboratory except for in the stalk litter treatment where there was an 8% decrease in litter-C loss and a 5% increase in SOM-C loss in the laboratory incubation experiment. N addition to litter increased decomposition of litter in the first 20 days of litter decomposition in the laboratory incubation experiment, but reduced litter decomposition rates after day 20. N addition to litter had very little effect on C storage in soil aggregates. In the field, litter placement, and physical litter structure influenced decomposition much more than N inputs. Thus, adding N to litter is not an effective strategy to sequester C in maize-based systems.

9.
Rev. med. vet. (Bogota) ; (24): 51-57, jul.-dic. 2012. ilus, tab
Article in Spanish | LILACS | ID: lil-663830

ABSTRACT

El objetivo fue comparar, en cuanto a productividad en materia seca y captura de carbono, entre un sistema silvopastoril y un sistema tradicional en cinco fincas ganaderas de piedemonte del departamento de Casanare. En el lote experimental de cada finca se sembró una mezcla de cuatro especies de pastos, de los cuales Brachiaria brizantha fue la especie que tuvo un desarrollo exitoso en las cinco fincas, y con la cual se analizó su productividad en materia seca y captura de carbono. A los cinco meses después de la renovación de pastos en los lotes experimentales se obtuvo una productividad en materia seca entre 6,3 y 14,9 tMS/ha, y encaptura de carbono entre 2,7 y 6,4 tCOT/ha; mientras que en los lotes tradicionales estuvo entre 4 y 5 tMS/ha, y en captura de carbono entre 1,7 y 2,9 tCOT/ha. A los 20 meses en los lotes experimentales se obtuvo una productividad en materia seca entre 12 y 13,7 tMS/ha, y en captura de carbono entre 4,1 y 4,5 tCOT/ha; mientras que en los lotes tradicionales estuvo entre 4,4 y 6,5 tMS/ha, y en captura de carbono entre 1,4 y 2,1 tCOT/ha. Esto indica que la renovación de praderas con pastos adecuados y el pastoreo de rotación favorecen la producción en materia seca y la captura de carbono...


The goal was to compare, in terms of dry matter productivity and carbon sequestration, asilvopastoral system with a traditional system in five foothill cattle farms in the Departmentof Casanare. A mixture of four species of grass was planted in the experimental plot of eachfarm, of which Brachiaria brizantha was the species that had a successful development in thefive farms, and whose dry matter and carbon sequestration productivity was analyzed. Fivemonths after pasture renovation in the experimental lots, a dry matter productivity between6.3 and 14.9 tMS/ha and carbon sequestration productivity between 2.7 and 6.4 tCOT/ha were obtained; in traditional lots, dry matter productivity was between 4 and 5 tMS/ha,while carbon sequestration productivity was between 1.7 and 2.9 tCOT/ha. At 20 months, dry matter productivity between 12 and 13.7 tMS/ha, and carbon sequestration productivitybetween 4.1 and 4.5 tCOT/ha were obtained in experimental lots, while in traditionallots, dry matter productivity was between 4.4 and 6.5 tMS/ha, while carbon sequestrationproductivity was between 1.4 and 2.1 tCOT/ha. This indicates that renewal of grasslandswith suitable pastures and rotational grazing favor dry matter and carbon sequestration production...


O objetivo foi comparar, com respeito à produtividade em matéria seca e captura de carbono,um sistema silvipastoril e um sistema tradicional em cinco fazendas de criação de gado nodepartamento de Casanare. No lote experimental de cada fazenda plantou-se uma misturade quatro espécies de pastos, dos quais Brachiaria brizantha foi a espécie que teve um desenvolvimentobem-sucedido nas cinco fazendas, e com a qual analisou-se sua produtividadeem matéria seca e captura de carbono. Cinco meses depois da renovação de pastos nos lotesexperimentais obteve-se uma produtividade em matéria seca entre 6,3 e 14,9 tMS/ha, e umacaptura de carbono entre 2,7 e 6,4 tCOT/ha; enquanto que nos lotes tradicionais esteveentre 4 e 5 tMS/ha, e uma captura de carbono entre 1,7 e 2,9 tCOT/ha. Aos 20 meses noslotes experimentais obteve-se uma produtividade em matéria seca entre 12 e 13,7 tMS/ha, eem captura de carbono entre 4,1 e 4,5 tCOT/ha; enquanto que nos lotes tradicionais esteveentre 4,4 e 6,5 tMS/ha, e uma captura de carbono entre 1,4 e 2,1 tCOT/ha. Isto indica quea renovação de pastos com variedades adequadas e o pastoreio de rotação favorecem a produçãode matéria seca e a captura de carbono...


Subject(s)
Humans , Carbon , Efficiency , Poa
10.
J Biosci ; 2011 Sep; 36 (4): 701-708
Article in English | IMSEAR | ID: sea-161596

ABSTRACT

The present study was undertaken in seven major forest types of temperate zone (1500 m a.s.l. to 3100 m a.s.l.) of Garhwal Himalaya to understand the effect of slope aspects on carbon (C) density and make recommendations for forest management based on priorities for C conservation/sequestration. We assessed soil organic carbon (SOC) density, tree density, biomass and soil organic carbon (SOC) on four aspects, viz. north-east (NE), north-west (NW), south-east (SE) and south-west (SW), in forest stands dominated by Abies pindrow, Cedrus deodara, Pinus roxburghii, Cupressus torulosa, Quercus floribunda, Quercus semecarpifolia and Quercus leucotrichophora. TCD ranged between 77.3 CMg ha−1 on SE aspect (Quercus leucotrichophora forest) and 291.6 CMg ha−1 on NE aspect (moist Cedrus deodara forest). SOC varied between 40.3 CMg ha−1 on SW aspect (Himalayan Pinus roxburghii forest) and 177.5 CMg ha−1 on NE aspect (moist Cedrus deodara forest). Total C density (SOC+TCD) ranged between 118.1 CMg ha−1 on SW aspect (Himalayan Pinus roxburghii forest) and 469.1 CMg ha−1 on NE aspect (moist Cedrus deodara forest). SOC and TCD were significantly higher on northern aspects as compared with southern aspects. It is recommended that for C sequestration, the plantation silviculture be exercised on northern aspects, and for C conservation purposes, mature forest stands growing on northern aspects be given priority.

11.
J Environ Biol ; 2010 Jul; 31(4): 549-552
Article in English | IMSEAR | ID: sea-146458

ABSTRACT

Plant height, biomass production, assimilatory functions and chlorophyll accumulation of Panicum maximum and Stylosanthes hamata in intercropping systems was influenced significantly under elevated CO2 (600 ±50 ppm) in open top chambers (OTCs). The plant height increased by 32.0 and 49.0% over the control in P. maximum and S. hamata respectively in intercropping system under elevated CO2 over open field grown crops (Ca). P. maximum and S. hamata produced 67 and 85% higher fresh and dry biomass respectively under elevated CO2. Rates of photosynthesis and stomatal conductance increased in both the crop species in intercropping systems under elevated CO2. The canopy photosynthesis (photosynthesis x leaf area index) of these crop species increased significantly under elevated CO2 over the open grown crops. The chlorophyll a and b accumulation were also higher in the leaves of both the crop species as grown in OTC with elevated CO2. The increased chlorophyll content, leaf area index and canopy photosynthesis led to higher growth and biomass production in these crop species under elevated CO2. The total carbon sequestration in crop biomass and soils during the three years was 21.53 Mg C/ha under elevated CO2. The data revealed that P. maximum and S. hamata intercropping system is the potential as a sink for the increasing level of CO2 in the atmosphere in the semi-arid tropics.

SELECTION OF CITATIONS
SEARCH DETAIL