Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.691
Filter
1.
Einstein (Säo Paulo) ; 22: eRW0552, 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1534332

ABSTRACT

ABSTRACT Introduction Triple-negative breast cancer is an aggressive subtype of breast cancer characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. This phenotype renders triple-negative breast cancer cells refractory to conventional therapies, resulting in poor clinical outcomes and an urgent need for novel therapeutic approaches. Recent studies have implicated dysregulation of the Notch receptor signaling pathway in the development and progression of triple-negative breast cancer. Objective This study aimed to conduct a comprehensive literature review to identify potential therapeutic targets of the Notch pathway. Our analysis focused on the upstream and downstream components of this pathway to identify potential therapeutic targets. Results Modulating the Notch signaling pathway may represent a promising therapeutic strategy to treat triple-negative breast cancer. Several potential therapeutic targets within this pathway are in the early stages of development, including upstream (such as Notch ligands) and downstream (including specific molecules involved in triple-negative breast cancer growth). These targets represent potential avenues for therapeutic intervention in triple-negative breast cancer. Comments Additional research specifically addressing issues related to toxicity and improving drug delivery methods is critical for the successful translation of these potential therapeutic targets into effective treatments for patients with triple-negative breast cancer.

2.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 270-276, 2024.
Article in Chinese | WPRIM | ID: wpr-1014537

ABSTRACT

AIM: To investigate the effects of agkis-trodon halys venom anti-tumor component (AHVAC-) on the biological behavior of gastric cancer MKN-28 cells. METHODS: Gastric cancer MKN-28 cells were treated with the experimental concentrations (5, 10, 15 μg/mL) of AHAVC- for 24 h. Cell proliferation and toxicity assay (cell counting kit-8, CCK-8) was used to detect the inhibition rates of the cells in different concentrations of AHVAC-. The migration ability of the cells was evaluated by wound-healing and Transwell assay. The apoptosis were observed by laser confocal microscopy with annexin V-mCherry/DAPI double staining, and the apoptosis rates were analyzed by flow cytometry with annexin V-FITC/PI double fluorescence staining. The protein level of Caspease-3 was determined by Western blot. RESULTS: Compared with normal control group, the results of AHVAC- concentration groups showed that with the increase of AHVAC- concentration, the proliferative activity of MN-28 cells decreased gradually (P<0.01), the cell migration ability decreased gradually (P<0.01), and the cell apoptosis rate increased (P<0.05). The expression of apoptosis-related protein Caspease-3 was up-regulated (P<0.01). CONCLUSION: AHVAC- inhibits proliferation and migration of gastric cancer MSN-28 cells and induces apoptosis.

3.
Chinese Pharmacological Bulletin ; (12): 499-505, 2024.
Article in Chinese | WPRIM | ID: wpr-1013642

ABSTRACT

Aim To investigate the molecular mechanism by which quercetin inhibits the malignant behavior of breast cancer cells. Methods Breast cancer cell lines MCF-7 and MB231 were used as the research models. Lentiviral transfection was employed to establish tumor cells with high expression of ERa and MAL-AT-1. The expression of MALAT-1 was assessed using RT-qPCR,and ERa expression was determined through Western blot. Subsequently, CCK-8 assay and colony formation assay were conducted to evaluate cell proliferation. PI staining and adenovirus transfection were performed to observe the inhibitory effects of quercetin on breast cancer cell proliferation. Results 17|3-es-tradiol ( E2 ) promoted the proliferation of MCF-7 breast cancer cells, while 5 jjunol L quercetin reversed the promoting effect of E2 on proliferation ( P 0. 05 ) . Quercetin had no effect on MB231 breast cancer cells. Overexpression of ERa significantly inhibited the pro-proliferative effect of E2 on MB231-ERa cells, and quercetin further suppressed this effect. Additionally , quercetin inhibited the expression of MALAT-1. However,this inhibitory effect was reversed by overexpression of MALAT-1, leading to enhanced cell proliferation , cell cycle progression, and clonal formation a-bility. Conclusions Quercetin exerts its anti-tumor effects on breast cancer cells by regulating MALAT-1, dependent on the presence of estrogen receptor. Quercetin shows potential as a therapeutic drug for breast cancer targeting the estrogen receptor.

4.
Biomedical and Environmental Sciences ; (12): 71-84, 2024.
Article in English | WPRIM | ID: wpr-1007909

ABSTRACT

OBJECTIVE@#To investigate the role and molecular mechanism of exosomal miR-224-5p in colorectal cancer (CRC).@*METHODS@#The miR-224-5p expression in CRC patient tissues and cell-derived exosomes was measured by laser capture microdissection and qRT-PCR, respectively. Dual-luciferase reporter gene assay was used to determine the target gene of miR-224-5p. The protein expressions of p53 and unc-51 like kinase 2 (ULK2) in CRC cells were detected by western blot. Flow cytometry was used to detect cell cycle and apoptosis. Cell proliferation was measured by CCK8 and EdU assay.@*RESULTS@#The miR-224-5p expression was upregulated in CRC tissues and increased progressively with the rise of CRC stage. CRC cells secreted extracellular miR-224-5p mainly in an exosome-dependent manner, and then miR-224-5p could be transferred to surrounding tumor cells to regulate cell proliferation in the form of autocrine or paracrine. Moreover, ULK2 was characterized as a direct target of miR-224-5p and was downregulated in CRC tissues. Interestingly, ULK2 inhibited CRC cell proliferation in a p53-dependent manner. Furthermore, exosome-derived miR-224-5p partially reversed the proliferation regulation of ULK2 on CRC cells.@*CONCLUSION@#Our findings demonstrate that exosome-transmitted miR-224-5p promotes p53-dependent cell proliferation by targeting ULK2 in CRC, which may offer promising targets for CRC prevention and therapy.


Subject(s)
Humans , MicroRNAs/metabolism , Tumor Suppressor Protein p53/metabolism , Exosomes/metabolism , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
5.
Journal of Clinical Hepatology ; (12): 327-334, 2024.
Article in Chinese | WPRIM | ID: wpr-1007248

ABSTRACT

ObjectiveTo investigate the effect of kinesin family member 15 (KIF15) on the proliferation of hepatocellular carcinoma (HCC) cells and its mechanism of action. MethodsTCGA and GEPIA datasets were analyzed to determine the expression of KIF15 in HCC and its effect on tumor stage and survival. Quantitative real-time PCR and Western blot were used to measure the expression level of KIF15 in human-derived HCC cell lines (HepG2, Hep3B, MHCC-97H, and LM3) and human normal liver cell line L02 cultured in vitro, and Hep3B and HepG2 were selected for subsequent studies. CCK-8 assay, plate colony formation assay, and EdU staining were performed for Hep3B cells transfected with shRNA-NC or shRNA-KIF15 and HepG2 cells transfected with LV-vector or LV-KIF15 to evaluate the viability and proliferative capacity of these cells. GSEA was used to analyze the potential signaling pathways associated with KIF15 in HCC, and Western blot was used for detection. The independent-samples t test was used for comparison of continuous data between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsThe analysis of TCGA and GEPIA datasets showed that in HCC patients, the expression of KIF15 in HCC tissue was significantly higher than that in normal tissue, and the HCC patients with high KIF15 expression tended to have a poorer prognosis. Compared with sh-NC-Hep3B, sh3-Hep3B showed significant reductions in the mRNA and protein levels of KIF15 (P<0.05), cell viability, clone formation number, and EdU positive rate (all P<0.05). Compared with vector-HepG2, LV-KIF15-HepG2 showed significant increases in the mRNA and protein levels of KIF15 (P<0.05), cell viability, clone formation number, and EdU positive rate (all P<0.05). Subcutaneous tumor assay showed that compared with sh-NC-Hep3B, sh3-Hep3B showed reductions in tumor volume and tumor weight, as well as a significant reduction in the immunohistochemical score of Ki67 and a significant increase in the immunohistochemical score of TUNEL (P<0.05). GSEA analysis showed that the PI3K/AKT/mTOR pathway was positively correlated with KIF15 in HCC (NES=1.59, P<0.001). Western blot showed that LY294002 could inhibit the PI3K/AKT/mTOR pathway upregulated in LV-KIF15-HepG2, and compared with LV-KIF15-HepG2, LY294002+LV-KIF15-HepG2 showed significant reductions in cell viability, clone formation number, and EdU positive rate (all P<0.05). ConclusionKIF15 enhances the viability and proliferative capacity of HCC cells by upregulating the PI3K/AKT/mTOR signaling pathway.

6.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 169-177, 2024.
Article in Chinese | WPRIM | ID: wpr-1006509

ABSTRACT

Objective@#To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts (HGFs) and to provide experimental evidence for surface modification of implant abutments.@*Methods@#The samples were divided into an NC group (negative control, no other treatment on a smooth surface), an NM-1 group (nanomesh-1, electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage), and an NM-2 group (nanomesh-2, electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage). The surface morphologies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy (SEM). The surface hydrophilicities of the samples were measured with a contact angle measuring instrument. The proliferation of HGFs on the different samples were evaluated with CCK-8, and the expression of adhesion-related genes, including collagen Ⅰ (COL1A1), collagen Ⅲ (COL3A1), fibronectin 1 (FN1), focal adhesion kinase (FAK), vinculin (VCL), integrin α2 (ITGA2), and integrin β1 (ITGB1), on the different samples was measured with qRT-PCR. The expression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy (CLSM) after immunofluorescent staining. Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.@*Results@#SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups, with grid diameters of approximately 30 nm for the NM-1 group and approximately 150 nm for the NM-2 group. Compared with that of the NC group, the water contact angles of the NM-1 group and NM-2 groups were significantly lower (P<0.000 1). Cell proliferation in the NM-1 group was significantly greater than that in the NC group (P<0.01). Moreover, there was no significant difference in the water contact angles or cell proliferation between the NM-1 group and the NM-2 group. SEM revealed that HGFs were adhered well to the surfaces of all samples, while the HGFs in the NM-1 and NM-2 groups showed more extended areas, longer morphologies, and more developed pseudopodia than did those in the NC group after 24 h. qRT-PCR revealed that the expression levels of the adhesion-related genes COL1A1, COL3A1, FN1, FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups (P<0.01). The expression of vinculin protein in the NM-1 group was the highest, and the number of focal adhesions was greatest in the NM-1 group (P<0.01). The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers (P<0.000 1).@*Conclusion@#The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion, proliferation, collagen fiber secretion and syntheses of HGFs, and electrochemical dealloying of Ti6Al4V with a grid diameter of approximately 30 nm obviously promoted HGF formation.

7.
J. oral res. (Impresa) ; 12(1): 86-99, abr. 4, 2023. ilus
Article in English | LILACS | ID: biblio-1512278

ABSTRACT

Objective: The objective of this study was to investigate the morphology, proliferation, and differentiation of gingival mesenchymal stem cells (GMSCs) irradiated with a 970 nm Diode Laser (LLLT). It is essential to validate the efficacy of treatment, optimize irradiation conditions and guarantee the safety and quality of stem cells for future use in dental applications. Materials and Methods: GMSCs were cultured in standard conditions and irradiated with a Diode laser (970 nm, 0.5W) with an energy density of 9J/cm2. Cell proliferation was assessed with the WST-1 proliferation kit. GMSCs were differentiated into chondrogenic and osteogenic lineages. Cell morphology was performed with Hematoxylin/eosin staining, and quantitative nuclear analysis was done. Cell viability was monitored with trypan blue testing. Results: GMSCs subjected to irradiation demonstrated a significant increase in proliferation at 72 hours compared to the non-irradiated controls (p=0.027). This indicates that the 970 nm diode laser has a stimulatory effect on the proliferation of GMSCs. LLLT-stimulated GMSCs exhibited the ability to differentiate into chondrogenic and osteogenic lineages. A substantial decrease in cell viability was observed 24 hours after irradiation (p=0.024). However, after 48 hours, the cell viability recovered without any significant differences. This indicates that there might be a temporary negative impact on cell viability immediately following irradiation, but the cells were able to recover and regain their viability over time. Conclusions: This study support that irradiation with a 970 nm diode laser could stimulate the proliferation of GMSCs, maintain their ability to differentiate into chondrogenic and osteogenic lineages, and has minimal impact on the mor- phological characteristics of the cells. These results support the potential use of NIR Lasers in combination with GMSCs as a promising strategy for dental treatments.


Objetivo: El objetivo de este estudio fue investigar la morfología, proliferación y diferenciación de las células madre mesenquimatosas (GMSC) irradiadas con un láser de diodo de 970 nm (LLLT). Es fundamental validar la eficacia del tratamiento, optimizar las condiciones de irradiación y garantizar la seguridad y calidad de las células madre para su uso futuro en aplicaciones dentales.Materiales y Métodos: Las GMSC se cultivaron en condiciones estándar y se irradiaron con un láser de diodo (970 nm, 0,5 W) con una densidad de energía de 9 J/cm2. La proliferación celular se evaluó con el kit de proliferación WST-1. Las GMSC se diferenciaron en linajes condrogénicos y osteogénicos. La morfología celular se realizó con tinción de hematoxilina/eosina y se realizó un análisis nuclear cuantitativo. La viabilidad celular se controló con prueba de azul de tripano. Resultados: Las GMSC sometidas a irradiación demostraron un aumento significativo en la proliferación a las 72 horas en comparación con los controles no irradiados (p=0,027). Esto indica que el láser de diodo de 970 nm tiene un efecto estimulante sobre la proliferación de GMSC. Las GMSC estimuladas con LLLT exhibieron la capacidad de diferenciarse en linajes condrogénicos y osteogénicos. Se observó una disminución sustancial de la viabilidad celular 24 horas después de la irradiación (p=0,024). Sin embargo, después de 48 horas, la viabilidad celular se recuperó sin diferencias significativas. Esto indica que podría haber un impacto negativo temporal en la viabilidad de las células inmediatamente después de la irradiación, pero las células pudieron recuperarse y recuperar su viabilidad con el tiempo. Conclusión: En conclusión, este estudio respalda que la irradiación con un láser de diodo de 970 nm podría estimular la proliferación de GMSC, mantener su capacidad para diferenciarse en linajes condrogénicos y osteogénicos y tiene un impacto mínimo en las características morfológicas de las células. Estos resultados respaldan el uso potencial de láseres NIR en combinación con GMSC como una estrategia prometedora para tratamientos dentales.


Subject(s)
Humans , Low-Level Light Therapy , Cell Proliferation/radiation effects , Lasers, Semiconductor , Mesenchymal Stem Cells/radiation effects , In Vitro Techniques , Gingiva/radiation effects
8.
Salud UNINORTE ; 39(1)abr. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1536832

ABSTRACT

El agrandamiento gingival asociado al tratamiento de ortodoncia (AGTO) es el crecimiento no controlado de la encía. Aquí reportamos dos casos clínicos de pacientes masculinos sistèmicamente sanos con AGTO generalizado, con asociación a la biopelícula dental y sin esta. En ambos pacientes se identificó un tejido epitelial hiperplásico con abundantes células positivas para Ki-67 y tejido conectivo rico en fibras de colágeno distribuidas aleatoriamente. Futuros estudios serán útiles para dilucidar las diferencias fisiopatológicas del AGTO con relación con el biofilm dental y sin esta.


Orthodontic treatment-induce gingival overgrowth (OTGO) is uncontrolled growth of the gingiva. Here, we report two clinical cases of systemically healthy male patients with generalized GH undergoing orthodontic treatment, with and without association with dental biofilm. In both patients, hyperplastic epithelial tissue was identified with abundant Ki-67 positive cells and connective tissue rich in randomly distributed collagen fibers. Future studies will be useful to elucidate the pathophysiological differences of OTGO with and without relation to dental biofilm.

9.
Natal; s.n; 17 mar. 2023. 126 p. ilus.
Thesis in Portuguese | LILACS, BBO | ID: biblio-1532217

ABSTRACT

Introdução: Os cistos e tumores odontogênicos são lesões que apresentam comportamento biológico heterogêneo e patogênese ainda não totalmente esclarecida. A Yes-associated protein (YAP) atua como um regulador transcricional de genes envolvidos na proliferação celular e na apoptose, participando da ativação de vias associadas ao crescimento cístico e à progressão neoplásica. Objetivo: Analisar a expressão imuno-histoquímica da proteína YAP e correlacioná-la com marcadores envolvidos na proliferação celular e na apoptose em lesões odontogênicas epiteliais benignas. Metodologia: A amostra consistiu de 95 casos de lesões odontogênicas - 25 cistos dentígeros (CDs), 30 CO não sindrômicos (COs), 30 AMB convencionais (AMB-Cs) e 10 AMB unicísticos (AMB-Us) -, além de 10 espécimes de folículo dentários (FD). Foi realizada coleta dos dados clinico-demográficos dos casos, bem como análise morfológica para melhor caracterização da amostra. Os cortes histológicos foram submetidos à técnica imuno-histoquímica através da utilização dos anticorpos YAP, ciclina D1, Ki-67 e Bcl-2, e a análise da expressão destes foi realizada quali-quantitativamente, mediante metodologia adaptada. Os dados coletados seguiram para análise descritiva e estatística (p ≤ 0,05). Resultados: Houve discreta predileção por mulheres (n = 55; 57,6%) e por indivíduos na faixa etária dos 21 aos 40 anos (n = 50; 47,6%), sendo a região posterior de mandíbula mais afetada (64%). A análise da imunoexpressão de YAP revelou maiores níveis de expressão em COs, especialmente nas camadas basal e parabasal, seguido dos AMB-Us e AMB-Cs, que demonstraram moderada imunorreatividade, predominantemente nas células periféricas. Além disso, houve diferenças significativas quanto à imunoexpressão de YAP entre os grupos analisados, com existência de correlações positivas e estatisticamente significativas entre YAP e ciclina D1 em CDs e AMB-Us, e entre YAP e Ki-67 em AMB-Us (p < 0,05). Todavia, entre a imunoexpressão YAP e Bcl-2, foi verificada ausência de correlação estatisticamente significativa. Conclusões: A YAP pode exercer influência sobre a proliferação celular do epitélio de cistos e tumores odontogênicos, auxiliando, assim, na progressão das diferentes lesões odontogênicas (AU).


Background: Odontogenic cysts and tumors present heterogeneous biological behavior, and their etiopathogenesis is not fully understood yet. Yes-associated protein (YAP) acts as a transcriptional regulator of genes involved in cell proliferation and apoptosis, activating pathways associated with cystic growth and neoplastic progression. Objective: To analyze the immunohistochemical expression of YAP protein and correlate it with markers involved in cell proliferation and apoptosis in benign epithelial odontogenic lesions. Methods: The sample consisted of 95 cases of odontogenic lesions - 25 dentigerous cysts (DCs), 30 non-syndromic odontogenic keratocyst (OKCs), 30 conventional AMB (C-AMBs), and 10 unicystic AMB (UAMBs) -, in addition to 10 specimens of dental follicles (DF). Clinicodemographic data collection was carried out, as well as morphological analysis for better characterization of the sample. The histological sections were submitted to the immunohistochemical technique using YAP, cyclin D1, Ki-67, and Bcl-2 antibodies, and their immunoexpression analysis was performed qualitatively and quantitatively, through an adapted methodology. The collected data were submitted for descriptive and statistical analysis (p ≤ 0.05). Results: There was a slight predilection for women (n = 55; 57.6%) and individuals aged between 21 and 40 years (n = 50; 47.6%), with the posterior region of the mandible as the most affected site (64%). Analysis of YAP immunoexpression revealed higher expression levels in OKCs, especially in the basal and parabasal layers, followed by U-AMBs and C-AMBs, which showed moderate immunoreactivity, predominantly in peripheral cells. In addition, there were significant differences in YAP immunoexpression between the analyzed groups, with positive and statistically significant correlations between YAP and cyclin D1 in DCs and U-AMBs, and between YAP and Ki-67 in U-AMBs (p < 0.05). However, between YAP and Bcl-2 immunoexpression, there was no statistically significant correlation. Conclusions: YAP may influence on the cell proliferation of odontogenic cysts and tumors epithelium, thus helping with the progression of the different odontogenic lesions (AU) .


Subject(s)
Cell Proliferation , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Dentigerous Cyst/pathology , Biomarkers, Tumor , Medical Records , Retrospective Studies , Data Interpretation, Statistical , Apoptosis , Odontogenic Cyst, Calcifying/pathology , Statistics, Nonparametric , Inhibitor of Differentiation Proteins , Observational Study , Morphological and Microscopic Findings
10.
An. bras. dermatol ; 98(1): 26-35, Jan.-Feb. 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1429619

ABSTRACT

Abstract Background Hypertrophic scar (HS), a fibroproliferative disorder caused by aberrant wound healing following skin injuries such as burns, lacerations and surgery, is characterized by invasive proliferation of fibroblasts and excessive extracellular matrix (ECM) accumulation. The dysregulation of autophagy is the pathological basis of HS formation. Previously, angiopoietin-2 (ANGPT2) was found to be overexpressed in HS fibroblasts (HSFs) compared with normal skin fibroblasts. However, whether ANGPT2 participates in the process of HS formation and the potential molecular mechanisms are not clear. Objective This study is intended to figure out the role of ANGPT2 and ANGPT2-mediated autophagy during the development of HS. Methods RT-qPCR was used to detect ANGPT2 expression in HS tissues and HSFs. HSFs were transfected with sh-ANGPT2 to knock down ANGPT2 expression and then treated with MHT1485, the mTOR agonist. The effects of sh-ANGPT2 or MHT1485 on the proliferation, migration, autophagy and ECM accumulation of HSFs were evaluated by CCK-8 assay, Transwell assay and western blotting. The expression of PI3K/Akt/mTOR pathway-related molecules (p-PI3K, p-Akt and p-mTOR) was assessed by western blotting. Results ANGPT2 expression was markedly upregulated in HS tissues and HSFs. ANGPT2 knockdown decreased the expression of p-PI3K, p-Akt and p-mTOR. ANGPT2 knockdown activated autophagy and inhibited the proliferation, migration, and ECM accumulation of HSFs. Additionally, the treatment of MHT1485, the mTOR agonist, on ANGPT2-downregulated HSFs, partially reversed the influence of ANGPT2 knockdown on HSFs. Study limitations The study lacks the establishment of more stable in vivo animal models of HS for investigating the effects of ANGPT2 on HS formation in experimental animals. Conclusions ANGPT2 downregulation represses growth, migration, and ECM accumulation of HSFs via autophagy activation by suppressing the PI3K/Akt/mTOR pathway. Our study provides a novel potential therapeutic target for HS.

11.
J. vasc. bras ; 22: e20220029, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1422038

ABSTRACT

Abstract Background Determination of predictors that can affect development of atherosclerosis progression in the postoperative period is an urgent problem in vascular surgery. Objectives Integrated assessment of markers of apoptosis and cell proliferation in atherosclerotic lesions and their progression after surgery in patients with peripheral arterial diseases. Methods The investigation included 30 patients with stage IIB-III peripheral arterial disease. All patients have undergone open surgical interventions on the arteries of the aorto-iliac and femoral-popliteal segments. During these interventions, intraoperative specimens were obtained from the vascular wall with atherosclerotic lesions. The following values were evaluated: VEGF А165, PDGF BB, and sFas. Samples of normal vascular wall were obtained from post-mortem donors and used as a control group. Results The levels of Bax and p53 were increased (p<0.001) in samples from arterial wall with atherosclerotic plaque, while sFas values were reduced (p<0.001), compared to their levels in control samples. Values of PDGF BB and VEGF A165 were 1.9 and 1.7 times higher in atherosclerotic lesion samples (p=0.001), in comparison with the control group. The levels of p53 and Bax were increased against a background of reduced sFas levels in samples with progression of atherosclerosis compared to their baseline values in samples with atherosclerotic plaque (p<0.05). Conclusions Initially increased values of the Bax marker against a background of reduced sFas values in vascular wall samples from patients with peripheral arterial disease is associated with risk of atherosclerosis progression in the postoperative period.


Resumo Contexto A determinação de preditores que possam influenciar o desenvolvimento da progressão da aterosclerose no período pós-operatório é um problema urgente em cirurgia vascular. Objetivos Realizar uma avaliação integral de marcadores de apoptose e proliferação celular nas lesões ateroscleróticas e sua progressão após cirurgia em pacientes com doenças arteriais periféricas. Métodos A investigação incluiu 30 pacientes com doenças arteriais periféricas de estágio IIB-III. Todos os pacientes foram submetidos a intervenções operatórias abertas nas artérias dos segmentos aorto-ilíaco e fêmoro-poplíteo. Durante a intervenção, foi obtido material intraoperatório da parede vascular com lesões ateroscleróticas. Foram avaliados os seguintes valores: VEGF A165, PDGF BB e sFas. Como grupo controle, amostras de parede vascular normal foram obtidas de doadores post-mortem. Resultados O nível de Bax e p53 (p < 0,001) em amostras de parede arterial com placa aterosclerótica estava elevado em meio a valores reduzidos de sFas (p < 0,001) em comparação ao grupo controle. Os valores de PDGF BB e VEGF A165 foram 1,9 e 1,7 vezes maiores, respectivamente, nas amostras com lesão aterosclerótica (p = 0,001) do que no grupo controle. O nível de Bax e p53 e Bax estava elevado no contexto de nível reduzido de sFas em amostras com progressão da aterosclerose em comparação com seus valores basais em amostras com placa aterosclerótica (p < 0,05). Conclusões Níveis inicialmente elevados do marcador Bax no contexto de valores reduzidos de sFas na parede vascular em pacientes com doença arterial periférica estão associados a risco de progressão da aterosclerose no período pós-operatório.

12.
Chinese Journal of Biotechnology ; (12): 1477-1501, 2023.
Article in Chinese | WPRIM | ID: wpr-981149

ABSTRACT

Patients with glioblastoma (GBM) generally have a bad prognosis and short overall survival after being treated with surgery, chemotherapy or radiotherapy due to the histological heterogeneity, strong invasive ability and rapid postoperative recurrence of GBM. The components of GBM cell-derived exosome (GBM-exo) can regulate the proliferation and migration of GBM cell via cytokines, miRNAs, DNA molecules and proteins, promote the angiogenesis via angiogenic proteins and non-coding RNAs, mediate tumor immune evasion by targeting immune checkpoints with regulatory factors, proteins and drugs, and reduce drug resistance of GBM cells through non-coding RNAs. GBM-exo is expected to be an important target for the personalized treatment of GBM and a marker for diagnosis and prognosis of this kind of disease. This review summarizes the preparation methods, biological characteristics, functions and molecular mechanisms of GBM-exo on cell proliferation, angiogenesis, immune evasion and drug resistance of GBM to facilitate developing new strategies for the diagnosis and treatment of GBM.


Subject(s)
Humans , Glioblastoma/genetics , Exosomes/metabolism , MicroRNAs/metabolism , Prognosis , Cell Proliferation , Brain Neoplasms/genetics , Cell Line, Tumor
13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 228-236, 2023.
Article in Chinese | WPRIM | ID: wpr-979469

ABSTRACT

Renal fibrosis, the final pathological outcome of end-stage chronic kidney diseases, is associated with inflammation, oxidative stress, epithelial-mesenchymal transdifferentiation (EMT), and extracellular matrix deposition. It belongs to the categories of edema, ischuria, anuria and vomiting, and consumptive disease in traditional Chinese medicine (TCM), with the key pathogenesis of Qi deficiency and blood stasis and the primary treatment principle of replenishing Qi and activating blood. Astragali Radix-Salviae Miltiorrhizae Radix et Rhizoma mainly contains astragalosides, polysaccharides, calycosin, salvianolic acid, and tanshinone, with the effect of tonifying Qi and activating blood. Studies have shown that this herb pair and its active components can delay the progress of renal fibrosis by regulating multiple signaling pathways. With consideration to the pathogenesis of Qi deficiency and blood stasis, this article reviews the research progress in the mitigation of renal fibrosis by Astragali Radix-Salviae Miltiorrhizae Radix et Rhizoma from the aspects of protecting glomerular filtration barrier, inhibiting EMT and mesangial cell proliferation, improving renal hemodynamics, and protecting renal function. Furthermore, the mechanisms were summarized. Specifically, Astragali Radix-Salviae Miltiorrhizae Radix et Rhizoma and its effective components can improve mitochondrial function and fatty acid metabolism, alleviate endoplasmic reticulum stress and autophagy disorders, and inhibit immune inflammation and oxidative stress by regulating nuclear factor E2-related factor 2 (Nrf2)/PTEN-induced kinase 1 (Pink1), Nrf2/antioxidant response element (ARE), tumor necrosis factor-α (TNF-α)/nuclear transcription factor-κB (NF-κB), miR-21/Smad7/transforming growth factor beta (TGF-β), Wnt/β-catenin, long non-coding RNA-taurine up-regulated gene 1 (lncRNA-TUG1)/tumor necrosis factor receptor-associated factor 5 (TRAF5), Ras-related C3 botulinum toxin substrate 1 (Rac1)/cell division cycle protein 42 (CDC42), Ras homolog (Rho)/Rho-associated coiled-coil containing protein kinase (ROCK), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), peroxisome proliferator-activated receptor α (PPARα)/peroxisome proliferator-activated receptor γ coactivator l alpha (PGC-1α), and p38 mitogen-activated protein kinase (p38 MAPK). This review aims to provide references for the relevant research, give play to the role of Astragali Radix-Salviae Miltiorrhizae Radix et Rhizoma, and provide guidance for the clinical treatment of renal fibrosis.

14.
Organ Transplantation ; (6): 529-2023.
Article in Chinese | WPRIM | ID: wpr-978495

ABSTRACT

Objective To investigate the role and mechanism of circular RNA SNRK (circSNRK) in ischemia-reperfusion injury (IRI). Methods A hypoxia-reoxygenation (IRI) cell model was established. The expression level of circSNRK after IRI treatment and the effect of overexpression of circSNRK on cell proliferation and apoptosis were detected. The targets of circSNRK were identified. HK2 cells were divided into the blank group (Mock group), IRI group, control plasmid+IRI group (IRI+NC group), human circSNRK overexpression+IRI group (IRI+circSNRK group), human circSNRK overexpression+IRI+protein kinase B (Akt) inhibitor group (IRI+circSNRK+MK2206 group) and control plasmid group (NC group). Cell proliferation and apoptosis were detected in the Mock, IRI, IRI+NC and IRI+circSNRK groups. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the target of circSNRK were carried out. The expression levels of CDKN1A, Akt, B-cell lymphoma (Bcl)-2, cysteinyl aspartate specific proteinase (Caspase)-9 messenger RNA (mRNA), and those of p21, Bcl-2, Caspase-9, Akt and p-Akt proteins were detected in the Mock, IRI, IRI+NC and IRI+circSNRK groups, respectively. Cell proliferation and apoptosis were determined in the NC, IRI+NC, IRI+circSNRK and IRI+circSNRK+MK2206 groups. Results Compared with the Mock group, the expression level of circSNRK was lower, and cell proliferation capability of HK2 cells was decreased and cell apoptosis was increased in the IRI group. In the IRI+circSNRK group, cell proliferation capability was higher, whereas cell apoptosis was lower than those in the IRI+NC group. circSNRK could act on 648 targets through 51 microRNAs (miRNAs). GO enrichment analysis revealed that the targets of circSNRK were mainly enriched in biological processes (such as cell process and biological regulation), cell components (such as cell parts, cells and extracellular parts), and molecular functions (such as binding, binding proteins and enzymes). KEGG enrichment analysis showed that the targets of circSNRK were mainly enriched in cancer signaling pathway, phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway, miRNA in cancer and other related signaling pathways. Compared with the Mock group, the relative expression levels of CDKN1A and Caspase-9 mRNA were higher, the expression level of miR-99a-5p RNA was higher and the relative expression levels of Akt and Bcl-2 mRNA were lower in the IRI group. Compared with the IRI+NC group, the relative expression levels of CDKN1A and Caspase-9 mRNA were lower, those of Akt and Bcl-2 mRNA were higher, and the expression level of miR-99a-5p RNA was lower in the IRI+circSNRK group, and the differences were statistically significant (all P < 0.05). Compared with the Mock group, the expression levels of p21 and Caspase-9 proteins were higher, while those of p-Akt, Akt and Bcl-2 proteins were lower in the IRI group. Compared with the IRI+NC group, the expression levels of p21 and Caspase-9 proteins were lower, whereas those of p-Akt, Akt and Bcl-2 proteins were higher in the IRI+circSNRK group. The miR-99a-5p binding sites were observed in circSNRK and Akt. Compared with the NC group, cell proliferation capability was declined in the IRI+NC group. Compared with the IRI+NC group, cell proliferation capability was elevated in the IRI+circSNRK group. Compared with the IRI+circSNRK group, cell proliferation capability was declined in the IRI+circSNRK+MK2206 group (all P < 0.05). The cell apoptosis level in the IRI+NC group was higher than that in the NC group. The cell apoptosis level in the IRI+circSNRK group was lower compared with that in the IRI+NC group. The cell apoptosis level in the IRI+circSNRK+MK2206 group was higher than that in the IRI+circSNRK group. Conclusions Under IRI conditions, circSNRK may affect the proliferation and apoptosis of HK2 cells probably via the Akt signaling pathway.

15.
Chinese Journal of Radiological Health ; (6): 167-170, 2023.
Article in Chinese | WPRIM | ID: wpr-973172

ABSTRACT

@#<b>Objective</b> To investigate the effects of low-dose nuclear radiation exposure on the body by analyzing the antioxidant indices, immune indices, lymphocyte proliferation activity, and blood biochemical indices of persons exposed to long-term low-dose nuclear radiation, and to provide a basis for radiation protection and occupational health monitoring. <b>Methods</b> Eighty nuclear radiation workers were selected as the exposure group, and another 30 non-exposure personnel were selected as the control group. In both groups, blood biochemistry, serum total antioxidant capacity (T-AOC), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), lymphocyte proliferation activity, proliferating cell nuclear antigen (PCNA), apoptosis factors Bcl-2 and Bax, lymphocyte transformation rate, and lymphocyte micronucleus rate were measured. <b>Results</b> Compared with the control group, T-AOC, GSH-Px, SOD, cell proliferation activity, PCNA, Bcl-2, lymphocyte transformation rate, white blood cell count, and platelet count in the exposure group were significantly decreased, while MDA and Bax were significantly increased (<i>P</i> < 0.05). The lymphocyte micronucleus rate showed no significant difference between the two groups (<i>P</i> > 0.05). <b>Conclusion</b> Long-term low-dose exposure to nuclear radiation has certain effects on related indices of workers, but does not cause significant damage. The personnel exposed to nuclear radiation should enhance the awareness of protection and strengthen scientific protection to reduce radiation damage.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 71-77, 2023.
Article in Chinese | WPRIM | ID: wpr-973134

ABSTRACT

ObjectiveTo investigate the effects of Yanghetang (YHT) on breast cancer 4T1 cells and their mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway. MethodThe YHT-containing serum was prepared from SD rats. The rats were randomly assigned into a blank group (normal saline) and low-, medium-, and high-dose (5.8, 11.6, 23.2 g·kg-1, respectively) YHT groups. The serum containing 10% YHT in each group was mixed with 90% RMPI 1640 complete medium, and the mixture was used to interfere with the cells. Cell counting kit-8 (CCK-8) method was used to detect the proliferation of the 4T1 cells treated with YHT for 24, 48, 72 h. The apoptosis, migration, and invasion of 4T1 cells were detected by flow cytometry, scratch test, and Transwell assay, respectively. Western blot was employed to determine the expression levels of MEK1/2, phosphorylation (p)-MEK1/2, ERK1/2, p-ERK1/2, and rat sarcoma virus (RAS) protein. ResultCompared with the blank group, the intervention with YHT-containing serum for 24, 48, and 72 h had significant inhibitory effect on 4T1 cell proliferation (P<0.05, P<0.01). After intervention with YHT-containing serum for 48 h, the apoptosis rate of cells increased (P<0.01). Compared with the blank group, the intervention with YHT for 24 h and 48 h decreased the healing ability of cells in the scratch test (P<0.01). The invasive ability of cells treated with the low, medium, and high-dose YHT containing serum showed a decreasing trend (P<0.01). Compared with the blank group, YHT-containing serum did not change the expression of MEK1/2 and ERK1/2 while down-regulating the expression of p-MEK1/2, p-ERK1/2, and RAS protein (P<0.01). ConclusionYHT can inhibit the proliferation, migration, and invasion and promote the apoptosis of breast cancer 4T1 cells. In may promote the apoptosis by inhibiting the MEK/ERK signaling pathway and down-regulating the expression of p-MEK1/2, p-ERK1/2, and RAS protein.

17.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 543-551, 2023.
Article in Chinese | WPRIM | ID: wpr-972198

ABSTRACT

Objective @# To investigate the effect of micro/nano hierarchical structures on the adhesion and proliferation of MC3T3-E1 cells, evaluate the drug delivery potential of titanium surfaces, and provide a reference for the modification of selected areas of titanium surfaces to enhance drug delivery and slow drug release. @*Methods @# Pure titanium samples (10 mm in diameter and 2.5 mm in thickness) were randomly divided into a polished group (T), anodized group (TO), and micro/nano hierarchical structure group (FTO) according to the surface treatment of the titanium. The T group was polished, the TO group was treated with anodic oxidation technology, and the FTO group was treated by femtosecond laser etching combined with anodic oxidation technology. The three surface morphologies were observed by scanning electron microscopy (SEM), the wettability of the surface was measured by the contact angle, and the surface chemical composition was analyzed by X-ray energy dispersive spectroscopy (EDS). The depth of the FTO structure and the surface roughness were measured by confocal laser scanning microscopy (CLSM). MC3T3-E1 cell adhesion proliferation and differentiation on the surface of each group of samples was assessed by immunofluorescence staining, CCK-8, and semiquantitative analysis of Alizarin staining. A freeze-drying method was applied to load recombinant human bone morphogenetic protein-2 (rhBMP-2), and an enzyme-linked immunosorbent assay (ELISA) was used to assess the drug-loading potential of different surface structures. @* Results@#SEM revealed that the surface of T group titanium plates showed uniform polishing marks in the same direction. The surface of the TO group was a nanoscale honeycomb-like titanium dioxide (TiO2) nanotube structure, and the FTO group formed a regular and ordered micro/nano layered structure. The contact angle of the FTO group was the smallest at 32° ± 1.7°. Its wettability was the best. The average depth of the first-level structure circular pores was 93.6 μm, and the roughness was 1.5-2 μm. The TO and FTO groups contained a high percentage of oxygen, suggesting TiO2 nanotube formation. The FTO group had the most significant surface cell proliferation (P<0.001) and the largest cell adhesion surface area (P<0.05). rhBMP-2 was slowly released for 14 d after loading in the FTO group and promoted extracellular matrix mineralization (P<0.001). @*Conclusion @#Titanium surface microprepared hierarchical structure has the effect of promoting MC3T3-E1 cell adhesion, proliferation, and osteogenic differentiation with drug loading potential, which is a new method of titanium surface treatment.

18.
Journal of Southern Medical University ; (12): 111-116, 2023.
Article in Chinese | WPRIM | ID: wpr-971502

ABSTRACT

OBJECTIVE@#To investigate the effect of licochalcone A (LCA) on the proliferation and cell cycle of human lung squamous carcinoma cells and explore its possible molecular mechanism.@*METHODS@#MTT assay was used to detect the changes in proliferation of H226 cells after treatment with different concentrations of LCA for 48 h, and the IC50 of LCA was calculated. Flow cytometry was used to analyze cell cycle changes in H226 cells treated with 10, 20, and 40 μmol/L LCA, and the expressions of cyclin D1, cyclin-dependent kinase CDK2 and CDK4, and p-PI3K, PI3K, p-Akt, and Akt in the treated cells were detected using Western blotting. The effect of intraperitoneal injection of LCA for 24 days on tumor volume and weight was assessed in a BALB/c-nu mouse model bearing lung squamous carcinoma xenografts.@*RESULTS@#MTT assay showed that LCA significantly decreased the viability of H226 cells with an IC50 of 28.3 μmol/L at 48 h. Flow cytometry suggested that LCA treatment induced obvious cell cycle arrest at the G1 phase. LCA treatment also significantly decreased the expressions of cyclin D1, CDK2, and CDK4, and inhibited the phosphorylation of PI3K and Akt in H226 cells. In the tumor-bearing mice, LCA treatment for 24 days significantly reduced the tumor volume and weight.@*CONCLUSION@#LCA is capable of inhibiting the proliferation and inducing cell cycle arrest in lung squamous carcinoma cells possibility by regulating the PI3K/Akt singling pathway.


Subject(s)
Humans , Animals , Mice , Cyclin D1 , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Cell Cycle Checkpoints , Lung Neoplasms , Signal Transduction , Lung
19.
Journal of Southern Medical University ; (12): 85-91, 2023.
Article in Chinese | WPRIM | ID: wpr-971498

ABSTRACT

OBJECTIVE@#To evaluate the effects of CLEC5A expression level on cell proliferation, migration and invasion and epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) and explore the role of CLEC5A in the tumorigenesis and progression of HCC.@*METHODS@#The expression level of CLEC5A was detected in 50 pairs of HCC and adjacent tissues using immunohistochemical staining, and its association with clinicopathological parameters of HCC patients was analyzed. Cultured HCC cell line SK-HEP-1 was transfected with a lentiviral vector overexpressing CLEC5A, and the transfection efficiency was verified using real-time fluorescence quantitative PCR and Western blotting. The changes in proliferation, migration and invasion abilities of the transfected cells were analyzed using CCK-8, 5-ethynyl-29-deoxyuridine (EdU) and Transwell assays, and EMT of the cells was determined using Western blotting.@*RESULTS@#The protein expression level of CLEC5A was significantly lower in HCC tissues than in the adjacent tissues (P < 0.001). The expression level of CLEC5A was significantly correlated with tumor size (P=0.008), tumor number (P=0.010), histological differentiation (P=0.016), microvascular invasion (P=0.024) and BCLC stage (P=0.040). In SK-HEP-1 cells, overexpression of CLEC5A obviously inhibited the cell proliferation, migration and invasion and reversed EMT phenotype of the cells.@*CONCLUSION@#CLEC5A is a potential HCC suppressor gene and may serve as a promising therapeutic target for HCC.


Subject(s)
Humans , Carcinoma, Hepatocellular/genetics , Epithelial-Mesenchymal Transition , Liver Neoplasms/genetics , Cell Proliferation , Cell Differentiation , Receptors, Cell Surface/genetics , Lectins, C-Type/genetics
20.
Journal of Southern Medical University ; (12): 68-75, 2023.
Article in Chinese | WPRIM | ID: wpr-971496

ABSTRACT

OBJECTIVE@#To investigate the inhibitory effect of miR-125b-5p on proliferation and migration of osteosarcoma and the role of RAB3D in mediating this effect.@*METHODS@#The expression level of miR-125b-5p was detected by qRT-PCR in a normal bone cell line (hFOB1.19) and in two osteosarcoma OS cell lines (MG63 and HOS). A miR-125b-5p mimic or inhibitor was transfected in the osteosarcoma cell lines via liposome and the changes in cell proliferation and migration were detected with EDU and Transwell experiments. Bioinformatic analysis was conducted for predicting the target gene of miR-125b-5p, and the expression level of RAB3D in hFOB1.19, MG63, and HOS cells was detected by Western blotting. In the two osteosarcoma cell lines transfected with miR-125b-5p mimic or inhibitor, the expression levels of RAB3D mRNA and protein in osteosarcoma cells were examined with qRT-PCR and Western blotting. The effects of RAB3D overexpression, RAB3D knockdown, or overexpression of both miR-125b-5p and RAB3D on the proliferation and migration of cells were assessed using EDU and Transwell experiments.@*RESULTS@#The two osteosarcoma cell lines had significantly lower expression levels of miR-125b-5p (P < 0.05). Bioinformatic analysis predicted that RAB3D was a possible target gene regulated by miR-125b-5p. In osteosarcoma cells, overexpression of miR-125b-5p significantly lowered the expression of RAB3D protein (P < 0.05); inhibiting miR-125b-5p expression significantly decreased RAB3D expression only at the protein level (P < 0.05) without obviously affecting its mRNA level. Modulation of miR-125b-5p and RAB3D levels produced opposite effects on proliferation and migration of osteosarcoma cells, and in cells with overexpression of both miR-125b-5p and RAB3D, the effect of RAB3D on cell proliferation and migration was blocked by miR-125b-5p overexpression (P < 0.05).@*CONCLUSION@#Overexpression of miR-125b-5p inhibits the proliferation and migration of osteosarcoma cells by regulating the expression of RAB3D at the post-transcriptional level.


Subject(s)
Humans , Bone Neoplasms/genetics , Cell Proliferation , MicroRNAs/genetics , Osteosarcoma/genetics , rab3 GTP-Binding Proteins/genetics , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL