Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Nutrition Research and Practice ; : 446-452, 2013.
Article in English | WPRIM | ID: wpr-181572

ABSTRACT

Chronic consumption of a high-fat, high-sucrose (HFHS) diet increases insulin resistance and results in type 2 diabetes mellitus in C57BL/6J mice. Hyperglycemia in diabetics increases oxidative stress, which is associated with a high risk of diabetic complications. The purpose of this study was to examine the hypoglycemic and antioxidant effects of chamnamul [Pimpinella brachycarpa (Kom.) Nakai] in an animal model of type 2 diabetes. The alpha-glucosidase inhibitory activity of a 70% ethanol extract of chamnamul was measured in vitro. Five-week-old male C57BL/6J mice were fed a basal or HFHS diet with or without a 70% ethanol extract of chamnamul at a 0.5% level of the diet for 12 weeks after 1 week of adaptation. After sacrifice, serum glucose, insulin, adiponectin, and lipid profiles, and lipid peroxidation of the liver were determined. Homeostasis model assessment for insulin resistance (HOMA-IR) was determined. Chamnamul extract inhibited alpha-glucosidase by 26.7%, which was 78.3% the strength of inhibition by acarbose at a concentration of 0.5 mg/mL. Serum glucose, insulin, and cholesterol levels, as well as HOMA-IR values, were significantly lower in the chamnamul group than in the HFHS group. Chamnamul extract significantly decreased the level of thiobarbituric acid reactive substances and increased the activities of superoxide dismutase, catalase, and glutathione peroxidase in the liver compared with the HFHS group. These findings suggest that chamnamul may be useful in prevention of hyperglycemia and reduction of oxidative stress in mice fed a HFHS diet.


Subject(s)
Animals , Humans , Male , Mice , Acarbose , Adiponectin , alpha-Glucosidases , Antioxidants , Blood Glucose , Catalase , Cholesterol , Diabetes Complications , Diabetes Mellitus, Type 2 , Diet , Ethanol , Glucose , Glutathione Peroxidase , Homeostasis , Hyperglycemia , Insulin , Insulin Resistance , Lipid Peroxidation , Liver , Models, Animal , Oxidative Stress , Superoxide Dismutase , Thiobarbiturates , Thiobarbituric Acid Reactive Substances
SELECTION OF CITATIONS
SEARCH DETAIL