Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Korean Medical Science ; : 123-132, 2000.
Article in English | WPRIM | ID: wpr-18582

ABSTRACT

The vectorial transepithelial transport of water and electrolytes in the renal epithelium is achieved by the polarized distribution of various transport proteins in the apical and basolateral membrane. The short-term regulation of transepithelial transport has been traditionally thought to be mediated by kinetic alterations of transporter without changing the number of transporters. However, a growing body of recent evidence supports the possibility that the stimulus-dependent recycling of transporter-carrying vesicles can alter the abundance of transporters in the plasma membrane in parallel changes in transepithelial transport functions. The abundance of transporters in the plasma membrane is determined by net balance between stimulus-dependent exocytic insertion of transporters into and endocytic retrieval of them from the plasma membrane. The vesicular recycling occurs along the tracts of the actin microfilaments and microtubules with associated motors. This review is to highlight the importance of vesicular transport in the short-term regulatory process of transepithelial transport in the renal epithelium. In the short-term regulation of many other renal transporters, vesicular transport is likely to be also involved. Thus, vesicular transport is now emerged as a wide-spread general regulatory mechanism involved in short-term regulation of renal functions.


Subject(s)
Humans , Animals , Biological Transport/physiology , Endocytosis/physiology , Epithelial Cells/enzymology , Epithelial Cells/cytology , Exocytosis , Proton-Translocating ATPases/metabolism , Sodium Channels/metabolism
2.
Yonsei Medical Journal ; : 355-377, 1994.
Article in English | WPRIM | ID: wpr-88522

ABSTRACT

The eukaryotic cell is compartmentalized by a series of vesicular organelles which constitute the endocytic and exocytic transport pathways. Each vesicular compartment has distinct sets of membrane proteins, structures and functions. Despite continuous vesicular transport, each vesicular compartment maintains its structure and function by use of retention and retrieval signal for its own resident proteins. Proteins in transit along the endocytic and exocytic pathway are transported without admixing with cytoplasmic constituents by successive steps of budding from the donor vesicles, formation of intermediate transport vesicles, transport, targeting to and fusion with acceptor vesicles. Specificity and fidelity of the vesicular transport are conferred by vesicular membrane proteins and small molecular weight GTP-binding proteins of the Rab subfamily. Proteins for export are packaged into specific vesicles for their final destinations. Insertion into and retrieval from the plasma membrane of transport proteins in response to cellular stimulus are a new paradigm of cellular regulatory mechanism. Secretion of neurotransmitters, hormones and enzymes by exocytosis involves a complex set of cytosolic proteins, G-proteins, proteins on the secretory granule membrane and plasma membrane. Much progress has been recently made in identifying proteins and factors involved in the exocytosis. But the molecular interactions among identified proteins and regulatory factors are unknown and remain to be elucidated. Finally our chemiosmotic hypothesis which involves the H+ electrochemical gradient across the secretory granule membrane generated by an ATP-dependent electrogenic H(+)-ATPase as the potential driving force for fusion and release of granule contents will be discussed.


Subject(s)
Humans , Biological Transport , Exocytosis , Organelles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL