Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Chinese Traditional and Herbal Drugs ; (24): 3426-3432, 2019.
Article in Chinese | WPRIM | ID: wpr-850992

ABSTRACT

Objective: To establish multiwavelength HPLC fingerprint of Aurea helianthus from different batches, and combine quantitative analysis, similarity evaluation, cluster analysis, and principal component analysis to evaluate the quality of A. helianthus. Methods: The chromatographic column was Phenomenex Kinetex C18 (250 mm × 4.6 mm, 5 μm). The mobile phase was composed of 0.08% phosphoric acid water (A) and acetonitrile (B) in gradient elution at a flow rate of 1.0 mL/min, the detection wavelength was set at 260 nm for protocatechuic acid during 0-8 min, 324 nm for caffeic acid during 8-15 min, 360 nm for rutin, hyperin, isoquercitrin, gossypetin-8-O-β-D-glucuronide, myricetin, quercetin-3’-O-glucoside, and quercetin during 15-60 min. The column temperature was set at 30 oC. And the HPLC fingerprint of A. helianthus was established by the similarity evaluation system for chromatographic fingerprint of TCM (Version 2004A) and SPSS19.0, which was used for similarity evaluation, cluster analysis, and principal component analysis. Results: A total of 25 common peaks were confirmed of A. helianthus HPLC fingerprint, and nine peaks were identified which were determined. The similarity of 16 batches of samples was between 0.879 and 0.983; The results of cluster analysis showed that A. helianthus was clustered into two groups, indicating that there were differences in the similarity; Ranked the quality of A. helianthus based on the main component composite score. Conclusion: The method is simple and accurate, which can be used for the comprehensive quality evaluation research of the medicinal materials of A. helianthus.

2.
China Journal of Chinese Materia Medica ; (24): 100-105, 2019.
Article in Chinese | WPRIM | ID: wpr-771511

ABSTRACT

This present study aims to establish a UPLC method for simultaneously determining eleven components such as new chlorogenic acid,chlorogenic acid,caffeic acid,cryptochlorogenic acid,artichoke,isochlorogenic acid A,isochlorogenic acid B,isochlorogenic acid C,rutin,hibisin and loganin in Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica and comparing the differences in the contents of phenolic acids,flavonoids and iridoid glycosides of Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica.The method was carried out on an ACQUITY UPLC BEH C18column(2.1 mm×100 mm,1.7 μm) by a gradient elution using acetonitrile and 0.1% phosphoric acid.The flow rate was 0.3 mL·min-1.The column temperature was maintained at 30 ℃.The sample room temperature was 8 ℃.The wavelength was set at 326 nm for new chlorogenic acid,chlorogenic acid,caffeic acid,cryptochlorogenic acid,artichoke,isochlorogenic acid A,isochlorogenic acid B and isochlorogenic acid C,352 nm for rutin and lignin,and 238 nm for loganin.The injection volume was 1 μL.The eleven components has good resolution and was separated to baseline.Each component had a wide linear range and a good linear relationship(r≥0.999 6),the average recovery rate(n=9) was 98.96%,100.7%,97.24%,97.06%,99.53%,96.78%,98.12%,95.20%,95.12%,100.2%,98.61%and with RSD was 2.5%,1.4%,1.9%,2.1%,1.7%,1.9%,1.6%,2.0%,1.4%,2.2%,2.0%,respectively.Based on the results of the content determination,the chemometric methods such as cluster analysis and principal component analysis were used to compare the Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica.The results showed that Lonicerae Japonicae Flos and leaves of Lonicera japonica were similar in the chemical constituents,but both showed chemical constituents difference compored to Lonicerae Japonicae Caulis.The established multi-component quantitative analysis method can provide a reference for the quality control of Lonicerae Japonicae Flos,Lonicerae Japonicae Caulis and leaves of Lonicera japonica.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Chemistry , Flavonoids , Flowers , Chemistry , Hydroxybenzoates , Iridoid Glycosides , Lonicera , Chemistry , Phytochemicals , Plant Leaves , Chemistry , Quality Control
3.
China Journal of Chinese Materia Medica ; (24): 975-982, 2019.
Article in Chinese | WPRIM | ID: wpr-777529

ABSTRACT

This study aims to establish a combinative method based on fingerprint,assay of multi-component and chemometrics for quality evaluation of Magnoliae Officinalis Cortex. Twenty batches of samples were determined by UPLC and a common mode of fingerprint was established. The similarities between fingerprints of 20 batches of samples were over 0. 90 and the common mode were evaluated. Eight components were identified as syringing, magnocurarine, magnoflorine, magnoloside B, magnoloside A, honokiol,magnolol,and piperitylmagnolol by comparison with reference substances and their content in samples were simultaneously determined.Based on the results,the fingerprint had good consistency between the same origin and minor diversity between the different sources.Piperitylmagnolol and peak 13 could be used as a distinction with the different sources. According to content of 8 components,Fisher discriminant analysis model was established and different source sample was classified pursuant to the discriminant fraction. It is indicated that simultaneous quantification of multi components coupled with chemometrics analysis could be a well-acceptable strategy to identify and evaluate the quality of Magnoliae Officinalis Cortex.


Subject(s)
Chromatography, High Pressure Liquid , Discriminant Analysis , Drugs, Chinese Herbal , Reference Standards , Magnolia , Chemistry , Phytochemicals , Reference Standards , Quality Control
4.
China Journal of Chinese Materia Medica ; (24): 977-984, 2018.
Article in Chinese | WPRIM | ID: wpr-690530

ABSTRACT

Artemisiae Argyi Folium, the dried leaves of Artemisia argyi, has been widely used in traditional Chinese and folk medicines for treatment of hemorrhage, pain, and skin itch. Phytochemical studies indicated that volatile oil, organic acid and flavonoids were the main bioactive components in Artemisiae Argyi Folium. Compared to the volatile compounds, the research of nonvolatile compounds in Artemisiae Argyi Folium are limited. In the present study, an accurate and reliable fingerprint approach was developed using HPLC for quality control of Artemisiae Argyi Folium. A total of 10 common peaks were marked,and the similarity of all the Artemisiae Argyi Folium samples was above 0.940. The established fingerprint method could be used for quality control of Artemisiae Argyi Folium. Furthermore, an HPLC method was applied for simultaneous determination of seven bioactive compounds including five organic acids and two flavonoids in Artemisiae Argyi Folium and Artemisiae Lavandulaefoliae Folium samples. Moreover, chemometrics methods such as hierarchical clustering analysis and principal component analysis were performed to compare and discriminate the Artemisiae Argyi Folium and Artemisiae Lavandulaefoliae Folium based on the quantitative data of analytes. The results indicated that simultaneous quantification of multicomponents coupled with chemometrics analysis could be a well-acceptable strategy to identify and evaluate the quality of Artemisiae Argyi Folium.

5.
China Journal of Chinese Materia Medica ; (24): 3962-3969, 2018.
Article in Chinese | WPRIM | ID: wpr-775391

ABSTRACT

To establish the high performance liquid chromatography (HPLC) fingerprint for Digeda-4 decoction (DGD-4D), determine the contents of aesculetin, geniposide, picroside Ⅰ, picroside Ⅱ and ellagicacid in DGD-4D, and provide the scientific foundation for quality control of DGD-4D. The analysis was performed on Diamonsil(2) C₁₈ (4.6 mm×250 mm,5 μm) column, with methanol-0.1% phosphoric acid aqueous solution as mobile phase for gradient elution. The flow rate was 1.0 mL·min⁻¹; injection size was 10 μL; temperature was maintained at 30 °C, and the detection wavelength was set at 254 nm. The common mode of DGD-4D HPLC fingerprint was established, and the hidden information was analyzed by Chemometrics. Chromatographic peaks for DGD-4D were identified by HPLC and quantitative analysis was conducted for characteristic peaks. There were 17 common peaks in the fingerprints and the similarity of the fingerprints was over 0.9 in all 15 batches. The samples were broadly divided into four kinds by principal component analysis and clustering analysis. Four marker compounds were verified by partial least squares discriminant analysis, and No. 9, 12 and 14 peaks were identified as geniposide, picroside Ⅱ, and picroside Ⅰ respectively. The average recoveries were in the range of 95.91%-97.31%. The HPLC fingerprint method for content determination is reliable, accurate, rapid, simple, and reproducible, and can be used as one of the effective methods to control the quality of DGD-4D.


Subject(s)
Chromatography, High Pressure Liquid , Cinnamates , Drugs, Chinese Herbal , Reference Standards , Iridoid Glucosides , Iridoids , Methanol , Principal Component Analysis , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL