Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
The Journal of Advanced Prosthodontics ; : 465-471, 2016.
Article in English | WPRIM | ID: wpr-213528

ABSTRACT

PURPOSE: The purpose of this study is to evaluate the stability of interface between Co-Cr-Mo (CCM) UCLA abutment and external hex implant. MATERIALS AND METHODS: Sixteen external hex implant fixtures were assigned to two groups (CCM and Gold group) and were embedded in molds using clear acrylic resin. Screw-retained prostheses were constructed using CCM UCLA abutment and Gold UCLA abutment. The external implant fixture and screw-retained prostheses were connected using abutment screws. After the abutments were tightened to 30 Ncm torque, 5 kg thermocyclic functional loading was applied by chewing simulator. A target of 1.0 × 10⁶ cycles was applied. After cyclic loading, removal torque values were recorded using a driving torque tester, and the interface between implant fixture and abutment was evaluated by scanning electronic microscope (SEM). The means and standard deviations (SD) between the CCM and Gold groups were analyzed with independent t-test at the significance level of 0.05. RESULTS: Fractures of crowns, abutments, abutment screws, and fixtures and loosening of abutment screws were not observed after thermocyclic loading. There were no statistically significant differences at the recorded removal torque values between CCM and Gold groups (P>.05). SEM analysis revealed that remarkable wear patterns were observed at the abutment interface only for Gold UCLA abutments. Those patterns were not observed for other specimens. CONCLUSION: Within the limit of this study, CCM UCLA abutment has no statistically significant difference in the stability of interface with external hex implant, compared with Gold UCLA abutment.


Subject(s)
Crowns , Fungi , Mastication , Prostheses and Implants , Torque
2.
The Journal of Advanced Prosthodontics ; : 323-328, 2015.
Article in English | WPRIM | ID: wpr-44181

ABSTRACT

PURPOSE: This in-vitro study was designed to evaluate retention forces, microleakage and plastic deformation of a prefabricated 2-implant bar attachment system (SFI-Bar, Cendres+Metaux, Switzerland). MATERIALS AND METHODS: Two SFI implant-adapters were torqued with 35 Ncm into two implant analogues. Before the tube bars were finally sealed, the inner cavity of the tube bar was filled with liquid red dye to evaluate microleakage. As tube bar sealing agents three different materials were used (AGC Cem (AGC, resin based), Cervitec Plus (CP; varnish) and Gapseal (GS; silicone based). Four groups with eight specimens each were tested (GS, GS+AGC, AGC, CP). For cyclic loading, the attachment system was assembled parallel to the female counterparts in a chewing simulator. The mean retention forces of the initial and final ten cycles were statistically evaluated (ANOVA, alpha< or =.05). RESULTS: All groups showed a significant loss of retention forces. Their means differed between 30-39 N initially and 22-28 N after 50,000 loading cycles. No significant statistical differences could be found between the groups at the beginning (P=.224), at the end (P=.257) or between the loss of retention forces (P=.288). Microleakage occurred initially only in some groups but after 10,000 loading cycles all groups exhibited microleakage. CONCLUSION: Long-term retention forces of the SFI-Bar remained above 20 N which can be considered clinically sufficient. The sealing agents in this study are not suitable to prevent microleakage.


Subject(s)
Female , Humans , Mastication , Plastics , Silicones
3.
Journal of Korean Academy of Conservative Dentistry ; : 34-40, 2003.
Article in Korean | WPRIM | ID: wpr-170925

ABSTRACT

Chewing simulator, which can partly mimic the motion of chewing motion of human, has been successfully developed. The purpose of its development was to make a new machine which can anticipate the clinical results of restoration in the human teeth more accurately in vitro condition It is composed of 4 major parts; chewing part, motor part, water bath, controlling part. The controlling part control the chewing force, frequency, the temperature and running time of water. Additionally, the actual chewing force and remaining time is shown in the monitor of controlling part. At present, the chewing cycle is composed depending on the pre-published data of foreign people. Long term clinical data should be additionally collected for the simulator to mimic the clinical results more accurately.


Subject(s)
Humans , Baths , Mastication , Running , Tooth , Water
SELECTION OF CITATIONS
SEARCH DETAIL