Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Indian J Med Microbiol ; 2018 Mar; 36(1): 104-107
Article | IMSEAR | ID: sea-198731

ABSTRACT

Background: Integrons are genetic elements which are known for their role in capturing and spreading of antibiotic resistance determinants among Gram-negative bacilli. So far, there is no study regarding Class 3 integron and their genetic organisation in India. Objective: This study investigates the occurrence of Class 3 integron and their gene cassette array among Escherichia coli. Materials and Methods: In this study, a total of 200 E. coli isolates were collected from indoor and outdoor patients from Silchar Medical College and Hospital during September 2015 to February 2016. Detection of the integrase genes and gene cassettes within the Class 3 integron was performed by polymerase chain reaction which was further analysed by sequencing. Results: Twenty-seven isolates were found to harbour Class 3 integron. Sequencing of the gene cassettes and whole Class 3 integron revealed the presence of nine different types of cassettes array, out of which the arrangement with glycerol kinase gene cassette was found to be the most prevalent. Arrangement with blaCTX-Mgene cassette was also detected in few isolates. Conclusion: This study provides epidemiological profiling of Class 3 integrons in this geographical area. The data generated in this study are helpful in infection control programme, anti-infective research and search for epidemiological markers.

2.
Biol. Res ; 47: 1-10, 2014. ilus, tab
Article in English | LILACS | ID: biblio-950749

ABSTRACT

BACKGROUND: The occurrence and prevalence of integrons in clinical microorganisms and their role played in antimicrobial resistance have been well studied recently. As screening and detection of integrons are concerned, current diagnostic methodologies are restricted by significant drawbacks and novel methods are required for integrons detection. RESULTS: In this study, three loop-mediated isothermal amplification (LAMP) assays targeting on class 1, 2 and 3 integrons were implemented and evaluated. Optimization of these detection assays were performed, including studing on the reaction temperature, volume, time, sensitivity and specificity (both primers and targets). Application of the established LAMP assays were further verified on a total of 1082 isolates (previously identified to be 397 integron-positive and 685 integron-negative strains). According to the results, the indispensability of each primer had been confirmed and the optimal reaction temperature, volume and time were found to be 65°C, 45 min and 25 µL, respectively. As application was concerned, 361, 28 and 8 isolates carrying intI1, intI2 and intI3 yielded positive amplicons, respectively. Other 685 integron-negative bacteria were negative for the integron-screening LAMP assays, totaling the detection rate and specificity to be 100%. CONCLUSIONS: The intI1-, intI2- and intI3-LAMP assays established in this study were demonstrated to be the valid and rapid detection methodologies for the screening of bacterial integrons.


Subject(s)
DNA, Bacterial/isolation & purification , Nucleic Acid Amplification Techniques/methods , Integrons , Organic Chemicals , Salmonella/genetics , Serratia marcescens/genetics , Staphylococcus/genetics , Vibrio cholerae/genetics , Colony Count, Microbial , Microbial Sensitivity Tests , Polymerase Chain Reaction/methods , Sensitivity and Specificity , DNA, Complementary , DNA Primers , Integrases/genetics , Drug Resistance, Bacterial/genetics , Electrophoresis, Agar Gel , Escherichia coli/genetics , Fluorescent Dyes , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL