Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Medical Genetics ; (6): 12-16, 2020.
Article in Chinese | WPRIM | ID: wpr-798646

ABSTRACT

Objective@#To detect pathogenic variant of ARSA gene in an infant with late infantile metachromatic leukodystrophy (MLD).@*Methods@#The male proband had an onset of walking dysfunction and seizure at 28 months. Arylsulfatase A activity of his peripheral blood leucocytes was 26.9 nmol/mg.17h, and cranial MRI showed wild symmetrical demyelination. With genomic DNA extracted from his peripheral blood sample, all coding exons and splicing sites of the ARSA gene were subjected to Sanger sequencing. PubMed Protein BLAST system was employed to analyze cross-species conservation of the mutant amino acid. Ucsf chimera software was used to analyze the impact of candidate variants on the secondary structure of the protein product. Impact of potential variants was also analyzed with software including PolyPhen-2, Mutation Taster, SIFT and PROVEAN. Whole-exome sequencing was carried out to identify additional variants which may explain the patient’s condition.@*Results@#The proband was found to harbor compound heterozygous variants of the ARSA gene [c.467G>A (p.Gly156Asp) and c. 960G>A (p.Trp320*)], neither of which was reported previously. As predicted by Ucsf chimera software, the c. 960G>A (p.Trp320*) variant may demolish important secondary structures including α-helix, β-strand and coil of the ARSA protein, causing serious damage to its structure and loss of function. The c. 467G>A (p.Gly156Asp) variant was predicted to be "probably damaging" by PolyPhen-2, Mutation Taster and SIFT software.@*Conclusion@#The patient’s condition may be attributed to the compound heterozygous c. 467G>A (p.Gly156Asp) and c. 960G>A (p.Trp320*) variants of the ARSA gene. Above results have facilitated genetic counseling and prenatal diagnosis for this family.

2.
Chinese Journal of Medical Genetics ; (6): 1115-1119, 2019.
Article in Chinese | WPRIM | ID: wpr-800867

ABSTRACT

Objective@#To explore the genetic basis for a boy with mental retardation.@*Methods@#Clinical data and peripheral blood samples of the family were collected. Potential variants were screened by using a panel for genes associated with intellectual impairment. Suspected variants were verified by PCR and Sanger sequencing.@*Results@#The child presented with mental retardation, language delay and poor self-care. Imaging analysis showed widening of brain fissures and subarachnoid space, and dysplasia of corpus callosum. Three novel heterozygous variants, namely c. 1705T>C(p.S569P), c. 1708dupC (p.R570Pfs*80) and c. 2273delA (p.N758Tfs*22), were identified in the TRAPPC9 gene. The mother of the proband has carried the c. 1708dupC (p.R570Pfs*80) and c. 1705T>C(p.S569P) variants, while his father has carried the c. 2273delA (p.N758Tfs*22) variant.@*Conclusion@#The compound heterozygous variants of the TRAPPC9 gene probably underlie the disease in this family. Considering the clinical and genetic heterogeneity of mental retardation, genetic testing is essential for attaining diagnosis for patients with the relevant phenotype.

SELECTION OF CITATIONS
SEARCH DETAIL