Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Indian J Ophthalmol ; 2020 Jan; 68(1): 23-28
Article | IMSEAR | ID: sea-197750

ABSTRACT

Purpose: To detect biofilm forming capacity of bacterial isolates obtained from the conjunctiva, contact lens and accessories of contact lens wearers using phenotypic and genotypic methods. Methods: Bacterial strains were collected from the conjunctiva, contact lens and lens storage cases of contact lens wearers. The phenotypic detection of biofilm production was done using the tube method and congo red agar method. The biofilm-forming related genes, icaA, of Coagulase negative Staphylococcus (CONS) and Staphylococcus aureus, and pslA, of P. aeruginosa, were detected using PCR. Results: A total of 265 bacterial isolates which included S. aureus, CONS, Pseudomonas, Nil-fermenter Gram-negative bacilli (NFGNB), Bacillus spp, Diphtheroids, Micrococci, Klebsiella pneumonia, Klebsiella oxytoca, E. coli, Proteus mirabilis, Proteus vulgaris, Citrobacter koseri, Citrobacter freundii, Enterobacter cloacae, Moraxella were obtained. Of the 265 isolates, 53.5% were moderately positive, 33.2% strongly positive and 13.2% negative for biofilm production by tube method and 36.6% were moderately positive, 40% strongly positive and 23.3% negative for biofilm production by congo red agar method. Of the four S. aureus isolates, two (50%) showed the presence of icaA gene. Of the 23 CONS isolates, three (13%) showed the presence of icaA gene. All the Pseudomonas isolates were negative for presence pslA (1119 bp) gene though most of them were phenotypically positive for biofilm formation. Conclusion: Most of the bacterial isolates obtained from contact lens wearers had the potential to produce biofilms. Tube method and Congo red agar method exhibited significant statistical correlation (P-value = 0.006) and picked up a good number of biofilm-forming isolates, hence may be used for detection of biofilm production. The absence of biofilm-forming gene did not rule out the possibility for phenotypic biofilm production by bacteria.

2.
Braz. j. microbiol ; 43(1): 371-374, Jan.-Mar. 2012. ilus, tab
Article in English | LILACS | ID: lil-622826

ABSTRACT

This study determined the species of 54 staphylococci isolates from canine otitis and their ability to produce biofilm through the Congo red agar method, confirmed by scanning electron microscopy. The most frequently identified species were S. intermedius and S. simulans. Results showed that 30% of the strains were biofilm producers.


Subject(s)
Animals , Dogs , Agar , Biofilms , Otitis , Staphylococcal Infections , Staphylococcus/isolation & purification , Dogs , Methods , Microscopy, Electron, Scanning , Phenotype , Methods
3.
Malaysian Journal of Microbiology ; : 57-60, 2011.
Article in English | WPRIM | ID: wpr-626573

ABSTRACT

Microorganisms adhere to non-living material or living tissue, and form biofilms made up of extracellular polymers/slime. Biofilm-associated microorganisms behave differently from free-floating bacteria with respect to growth rates and ability to resist antimicrobial treatments and therefore pose a public health problem. The objective of this study is to detect the prevalence of biofilm producers among Gram positive and Gram negative bacteria isolated from clinical specimens, and to study their antimicrobial susceptibility pattern. The study was carried out from October 2009 to March 2010, at the Department of Microbiology, Army Medical College/ National University of Sciences and Technology (NUST), Rawalpindi, Pakistan. Clinical specimens were received from various wards of a tertiary care hospital. These were dealt by standard microbiological procedures. Gram positive and Gram negative bacteria isolated were subjected to biofilm detection by congo red agar method (CRA). Antimicrobial susceptibility testing of those isolates, which showed positive results (slime production), was done according to the Kirby-Bauer disc diffusion technique. A total of 150 isolates were tested for the production of biofilm/slime. Among them, 81 isolates showed positive results. From these 81, 51 were Gram positive and 30 were Gram negative. All the 81(54%) slime producers showed reduced susceptibility to majority of antibiotics. Bacterial biofilms are an important virulence factor associated with chronic nosocomial infection. Detection of biofilm forming organisms can help in appropriate antibiotic choice.

SELECTION OF CITATIONS
SEARCH DETAIL