Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Rev. odontol. mex ; 19(2): 89-95, abr.-jun. 2015. ilus, tab
Article in Spanish | LILACS-Express | LILACS | ID: lil-748835

ABSTRACT

Introducción: La implementación de modelos animales para el estudio de los tejidos dentales y periodontales de dientes articulados en sus alvéolos sometidos a altas temperaturas permite el establecimiento de parámetros repetitivos que contribuyen con los procesos de identificación. Objetivo: Describir los cambios radiográficos de los tejidos dentales y periodontales de cerdo (Sus domesticus) sometidos a altas temperaturas. Material y métodos: Se realizó un estudio observacional descriptivo de naturaleza pseudo-experimental in vitro para observar los cambios radiográficos de los tejidos dentales y periodontales en 60 dientes de cerdo doméstico sometidos a altas temperaturas (200, 400, 600, 800 y 1,000 ºC). Resultados: Los tejidos dentales y periodontales estudiados presentan gran resistencia a las altas temperaturas sin variar considerablemente su microestructura, de tal manera que los cambios físicos (estabilidad dimensional, fisuras, grietas y fracturas) que ocurren en la medida que aumenta la temperatura pueden describirse a través de radiografía convencional. Conclusiones: El análisis radiográfico de los dientes articulados en sus respectivos alvéolos se constituye en un mecanismo para determinar la temperatura a la cual estuvo sometido un diente, lo que puede ser empleado durante el proceso de identificación odontológica y documentación de la necropsia médico-legal para el caso de cadáveres o restos humanos quemados, carbonizados e incinerados. El cerdo doméstico (Sus domesticus) se constituye en un modelo animal experimental adecuado para estudiar dichos cambios; sin embargo, se recomienda realizar un estudio en dientes humanos articulados en su respectiva unidad alveolar, para determinar si los hallazgos radiográficos descritos se repiten y son extrapolables.


Introduction: The implementation of animal models for the study of periodontal and dental tissues of teeth articulated into their sockets and subjected to high temperatures allows the establishment of repetitive parameters which might contribute to identification processes. Aim: To describe radiographic changes of pig's (Sus domesticus) periodontal and dental tissues subjected to high temperatures. Material and methods: An in vitro pseudo-experimental, descriptive and observational study was undertaken in order to assess radiological changes of periodontal and dental tissues of 60 domestic pig's teeth which had been subjected to high temperatures (200, 400, 600, 800 and 1,000 ºC). Results: The dental and periodontal tissues subject of this research article presented strong resistance to high temperatures without considerable variation of their micro-structure. Thus, physical changes (dimensional stability, fissures, cracks and fractures) which took place as temperature increased, could be described using a conventional X-ray. Conclusions: Radiographic examination of teeth articulated in their sockets can be established as a mechanism to determine the temperature at which the tooth was subjected. This could be used in processes of dental identification and medical-legal autopsy documentation in cases of burned, carbonized or incinerated human remains. Domestic pigs (Sus domesticus) can be regarded as a suitable experimental animal models to study the aforementioned changes. Nevertheless, a study involving human teeth articulated in their own socket is recommended in order to determine whether the radiographic findings herein described are replicated and can be extrapolated.

2.
Chinese Journal of Radiological Medicine and Protection ; (12): 871-874, 2015.
Article in Chinese | WPRIM | ID: wpr-477616

ABSTRACT

Objective To compare patient organ doses and entrance surface dose conversion coefficients in conventional radiography using medical internal radiation dose (MIRD) phantom and voxel human phantom.Methods The voxel phantom was adapted to the Monte Carlo transport code to simulate the organ doses and entrance surface dose in five common projections, and thus the dose conversion coefficients between the entrance skin dose and organ dose were calculated.The results were compared with the reported mean values which were simulated using MIRD phantom.Results The dose conversion coefficients values of organs covered or partially covered by the X-ray field ranged from 0.149-0.650 in chest postero-anterior projection, 0.067-0.382 in chest left lateral projection, 0.023-0.374 in chest right lateral projection, 0.035-0.431 in abdominal antero-posterior projection, 0.083-0.432 in lumbar spine antero-posterior projection.In chest postero-anterior projection, significant differences were most obviously observed in lung, the dose conversion coefficients difference was 54.3%.In chest left lateral projection, the dose conversion coefficients difference of liver was greatest, which was 54.5%.In chest right lateral projection, the dose conversion coefficients differences of stomach wall was most obviously 63.8%.In abdominal antero-posterior projection, dose conversion coefficients discrepancy was most obviously observed in spleen, with the value of 65.0%;while in lumbar spine antero-posterior projection, the dose conversion coefficients differences of stomach wall was most obviously 43.7%.Conclusions Compared with the stylized MIRD phantoms, the anatomical realism in voxel phantom is evident.Therefore, the dose conversion coefficients calculated by voxel phantoms are more accurate and scientific in conventional radiology.

3.
The Journal of the Korean Academy of Periodontology ; : 199-211, 2002.
Article in Korean | WPRIM | ID: wpr-172468

ABSTRACT

Digital substraction technique and computer-assisted densitometirc analysis detect minor change in bone density and thus increase the diagnostic accuracy. This advantage as well as high sensitivity and objectivity which precludes human bias have drawn interest in radiologic research area. The objectives of this study are to verify if Radiographic density can be recognized in linear pattern when density profile of standard periapical radiograph with the aluminium stepwedge as the reference, was investigated under varies circumstances which can be encountered in clinical situations, and in addition to that to obtain mutual relationship between the existing standard radiographic system, and future digital image systems, by confirming the corelationship between the standard radiograph and Digora system which is a digital image system currently being used. In order to make quantitative analysis of the bone tissue, digital image system which uses high resolution automatic slide scanner as an input device, and Digora system were compared and analyzed using multifunctional program, Brain3dsp. The following conclusions were obtained. 1. Under common clinical situation that is 70kVp, 0.2 sec., and focal distance 10cm, Al-Equivalent image equation was found to be Y=11.21X+46.62 r(2)=0.9898 in standard radiographic system, and Y=12.68X+74.59, r(2)=0.9528 in Digora system, and linear relation was confirmed in both the systems. 2. In standard radiographic system, when all conditions were maintained the same except for the condition of developing solution, Al-Equivalent image equation was Y=10.07X+41.64, r(2)=0.9861 which shows high corelationship. 3. When all conditions were maintained the same except for the Kilovoltage peak, linear relationship was still maintained under 60kVp, and Al-Equivalent image equation was Y=14.60X+68.86, r(2)=0.9886 in the standard radiograhic system, and Y=13.90X+80.68, r(2)=0.9238 in Digora system. 4. When all conditions were maintained the same except for the exposure time which was varied from 0.01 sec. to 0.8 sec., Al-Equivalent image equation was found to be linear in both the standard radiographic system and Digora system. The R-square was distributed from 0.9188 to 0.9900, and in general, standard radiographic system showed higher R-square than Digora system. 5. When all conditions were maintained the same except for the focal distance which was varied from 5cm to 30cm, Al-Equivalent image equation was found to be linear in both the standard radiographic system and Digora system. The R-square was distributed from 0.9463 to 0.9925, and the standard radiographic system had the tendency to show higher R-square in shorter focal distances.


Subject(s)
Humans , Bias , Bone and Bones , Bone Density , Radiography, Dental, Digital , X-Ray Film
SELECTION OF CITATIONS
SEARCH DETAIL