Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Neuroscience Bulletin ; (6): 29-40, 2023.
Article in English | WPRIM | ID: wpr-971535

ABSTRACT

Fear memory contextualization is critical for selecting adaptive behavior to survive. Contextual fear conditioning (CFC) is a classical model for elucidating related underlying neuronal circuits. The primary visual cortex (V1) is the primary cortical region for contextual visual inputs, but its role in CFC is poorly understood. Here, our experiments demonstrated that bilateral inactivation of V1 in mice impaired CFC retrieval, and both CFC learning and extinction increased the turnover rate of axonal boutons in V1. The frequency of neuronal Ca2+ activity decreased after CFC learning, while CFC extinction reversed the decrease and raised it to the naïve level. Contrary to control mice, the frequency of neuronal Ca2+ activity increased after CFC learning in microglia-depleted mice and was maintained after CFC extinction, indicating that microglial depletion alters CFC learning and the frequency response pattern of extinction-induced Ca2+ activity. These findings reveal a critical role of microglia in neocortical information processing in V1, and suggest potential approaches for cellular-based manipulation of acquired fear memory.


Subject(s)
Mice , Animals , Primary Visual Cortex , Extinction, Psychological/physiology , Learning/physiology , Fear/physiology , Hippocampus/physiology
2.
Journal of Korean Neuropsychiatric Association ; : 1-11, 2016.
Article in Korean | WPRIM | ID: wpr-20871

ABSTRACT

The objective is this study is to provide a comprehensive understanding of the clinical implication of transcranial magnetic stimulation (TMS) in Alzheimer's dementia (AD). We collected studies using TMS in patients with AD and reviewed 41 identified articles. Thirty five articles were about measures of cortical reactivity, plasticity, connectivity, and six articles were about the enhancement of cognitive function in AD. Reduced short-latency afferent inhibition and resting motor threshold which reflect cholinergic dysfunction and enhanced cortical excitability respectively are consistent findings of altered cortical reactivity in AD. In addition, cortical plasticity and connectivity have shown impaired results in AD compared with healthy controls. Repetitively delivered TMS can improve several domains of cognitive function impaired in AD. Although the evidence is still preliminary, TMS has a clinical implication as a diagnostic and therapeutic method in AD. Thorough investigation of factors that can affect the results of TMS and further studies to clarify the results are needed.


Subject(s)
Humans , Dementia , Plastics , Transcranial Magnetic Stimulation
3.
Rev. colomb. psiquiatr ; 43(1): 32-39, ene.-mar. 2014. ilus, tab
Article in Spanish | LILACS, COLNAL | ID: lil-715339

ABSTRACT

La estimulación magnética transcraneal (EMT) es una herramienta no invasiva de estimulación cerebral que se basa en la capacidad de un campo magnético generado para penetrar el cráneo y las meninges y originar una corriente eléctrica secundaria en el tejido cerebral que produce despolarización neuronal. Esta técnica se puede aplicar en un solo estímulo, en pares de estímulos separados por intervalos o en trenes de estímulos repetidos a varias frecuencias. Si bien el mecanismo de acción exacto se desconoce, la EMT repetitiva puede modular la excitabilidad de la corteza cerebral, por lo cual se ha vislumbrado como una posible herramienta diagnóstica y terapéutica en el área de neuropsiquiatría. El objetivo de este artículo es revisar el conocimiento actual de la EMT en cuanto a principios básicos, mecanismos fisiopatológicos y utilidad en la práctica clínica de la neuropsiquiatría.


Transcranial Magnetic Stimulation (TMS) is a non-invasive method for stimulation of brain that is based on the ability of a generated magnetic field to penetrate skull and brain meninges, inducing an electric current in the brain tissues that produces neuronal depolarization. TMS can be applied as single pulse of stimulation, pairs of stimuli separated by variable intervals to the same or different brain areas, or as trains of repetitive stimuli at various frequencies. Its mechanism of action is currently unknown. Repetitive TMS can modify the excitability of the cerebral cortex, and has been postulated as a diagnostic and therapeutic tool in the area of neuropsychiatry. The aim of this article is to review the knowledge of the TMS as regards its basic principles, pathophysiological mechanism, and its usefulness in clinical practice.


Subject(s)
Humans , Female , Adult , Middle Aged , Knowledge , Transcranial Magnetic Stimulation , Neuropsychiatry , Pulse , Therapeutics , Cerebral Cortex , Impacts of Polution on Health , Magnetic Fields , Methods
4.
Clinical Psychopharmacology and Neuroscience ; : 118-125, 2013.
Article in English | WPRIM | ID: wpr-44841

ABSTRACT

Transcranial direct current stimulation (tDCS) is an upcoming treatment modality for patients with schizophrenia. A series of recent observations have demonstrated improvement in clinical status of schizophrenia patients with tDCS. This review summarizes the research work that has examined the effects of tDCS in schizophrenia patients with respect to symptom amelioration, cognitive enhancement and neuroplasticity evaluation. tDCS is emerging as a safe, rapid and effective treatment for various aspects of schizophrenia symptoms ranging from auditory hallucinations-for which the effect is most marked, to negative symptoms and cognitive symptoms as well. An interesting line of investigation involves using tDCS for altering and examining neuroplasticity in patients and healthy subjects and is likely to lead to new insights into the neurological aberrations and pathophysiology of schizophrenia. The mechanistic aspects of the technique are discussed in brief. Future work should focus on establishing the clinical efficacy of this novel technique and on evaluating this modality as an adjunct to cognitive enhancement protocols. Understanding the mechanism of action of tDCS as well as the determinants and neurobiological correlates of clinical response to tDCS remains an important goal, which will help us expand the clinical applications of tDCS for the treatment of patients with schizophrenia.


Subject(s)
Humans , Hallucinations , Neurobehavioral Manifestations , Neuronal Plasticity , Schizophrenia
5.
Biol. Res ; 41(4): 425-437, Dec. 2008. ilus, tab
Article in English | LILACS | ID: lil-518398

ABSTRACT

We studied primary-somatosensory cortical plasticity due to selective stimulation of the sensory periphery by two procedures of active exploration in adult rats. Subjects, left with only three adjacent whiskers, were trained in a roughness discrimination task or maintained in a tactile enriched environment. Either training or enrichment produced 3-fold increases in the barrel cortex areas of behaviorally-engaged whisker representations, in their zones of overlap. While the overall areas of representation expanded dramatically, the domains of exclusive principal whisker responses were virtually identical in enriched vs normal rats and were significantly smaller than either group in roughness discrimination-trained rats. When animals were trained or exposed to enriched environments with the three whiskers arrayed in an are or row, very equivalent overlaps in representations were recorded across their greatly-enlarged whisker representation zones. This equivalence in distortion in these behavioral preparations is in contradistinction to the normal rat, where overlap is strongly biased only along rows, probably reflecting the establishment of different relations with the neighboring cortical columns. Overall, plasticity phenomena are argued to be consistent with the predictions of competitive Hebbian network plasticity.


Subject(s)
Animals , Male , Rats , Discrimination Learning/physiology , Environment , Exploratory Behavior/physiology , Neuronal Plasticity/physiology , Somatosensory Cortex/physiology , Rats, Sprague-Dawley , Vibrissae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL