Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
1.
The Korean Journal of Physiology and Pharmacology ; : 45-54, 2017.
Article in English | WPRIM | ID: wpr-728258

ABSTRACT

Our study aims to determine the metabolism and excretion of novel pulmonary-targeting docetaxel liposome (DTX-LP) using the in vitro and in vivo animal experimental models. The metabolism and excretion of DTX-LP and intravenous DTX (DTX-IN) in New Zealand rabbits were determined with ultraperformance liquid chromatography tandem mass spectrometry. We found DTX-LP and DTX-IN were similarly degraded in vitro by liver homogenates and microsomes, but not metabolized by lung homogenates. Ultra-performance liquid chromatography tandem mass spectrometry identified two shared DTX metabolites. The unconfirmed metabolite M(un) differed structurally from all DTX metabolites identified to date. DTX-LP likewise had a similar in vivo metabolism to DTX-IN. Conversely, DTX-LP showed significantly diminished excretion in rabbit feces or urine, approximately halving the cumulative excretion rates compared to DTX-IN. Liposomal delivery of DTX did not alter the in vitro or in vivo drug metabolism. Delayed excretion of pulmonary-targeting DTX-LP may greatly enhance the therapeutic efficacy and reduce the systemic toxicity in the chemotherapy of non-small cell lung cancer. The identification of M(un) may further suggest an alternative species-specific metabolic pathway.


Subject(s)
Rabbits , Animal Experimentation , Carcinoma, Non-Small-Cell Lung , Chromatography, Liquid , Drug Therapy , Feces , In Vitro Techniques , Liposomes , Liver , Lung , Lung Neoplasms , Mass Spectrometry , Metabolic Networks and Pathways , Metabolism , Microsomes , Models, Animal , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL