Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Chinese Journal of Radiological Medicine and Protection ; (12): 145-149, 2018.
Article in Chinese | WPRIM | ID: wpr-708031

ABSTRACT

Objective To determine the optimal electron beam energy at different field size through a Monte Carlo-based simulation of the therapy head of Varian X 6 MV linear accelerator so as to study the influence of radial intensity on depth dose.Methods Firstly,keeping the radial intensity unchanged for the field of interest while changing electron beam energy,compassion was carried out of calculated percentage depth doses between measured values.Thus,the optimal energy was identified for this field size.Then,the obtained energy was set the optimal value to study the radial intensity influence on the depth doses.Results The optimal electron energy for 4 cm ×4 cm,10 cm × 10 cm,20 cm × 20 cm and 30 cm × 30 cm field sizes was 5.9,6.0,6.3 and 6.4 MeV respectively.Changes in radial intensities resulted in negligible changes in percentage depth doses for4 cm ×4-cm and 10 cm × 10 cm fields,but led to observable discrepancy for 20 cm × 20 cm and 30 cm × 30 cm fields.Conclusions The optimal electron energies for different field sizes are slightly different.Change in radial intensity distribution has significant influence on the depth dose for large field.To improve simulation accuracy,the field size needs to be taken into consideration in determining the electron beam energy and radial intensity distribution.

2.
Chinese Journal of Radiological Medicine and Protection ; (12): 945-947, 2015.
Article in Chinese | WPRIM | ID: wpr-490345

ABSTRACT

Objective To find the best model parameters through Monte Carlo simulation of 6 MV flattening-filter-free (FFF) beams in TrueBeam accelerator, and establish the foundation for the further study of the clinical dosimetry on 6 MV FFF X-rays.Methods Using the BEAMnrc and DOSXYZnrc codes, the percentage depth dose (PDD) and the off-axis ratio (OAR) curves of field ranges from 4 cm ×4 cm to 40 cm × 40 cm were simulated for 6 MV FFF X-ray by adjusting the incident beam energy, radial intensity distribution and angular spread, respectively.The simulation results and measured data were compared, where the optimal Monte Carlo model input parameters were acquired.Results The simulation was most comparable to the measurement when the incident electron energy, full width at half maximum (FWHM) and the spread angle were set as 6.1 MeV, 0.75 mm and 0.9°, respectively.The deviation of 1 mm (position)/1% (local dose) could be met by the PDD of all tested field sizes and by the OAR when the fields sizes were no larger than 30 cm ×30 cm.The OAR of 40 cm ×40 cm field sizes fulfilled criteria of 1 mm (position)/1.5% (local dose).Conclusions Monte Carlo simulation agrees well with the measurement and the proposed model parameters, which can be used for further clinical dosimetry studies of 6 MV FFF X-rays.

3.
Chinese Journal of Radiation Oncology ; (6): 64-67, 2013.
Article in Chinese | WPRIM | ID: wpr-432179

ABSTRACT

Objective To study the percentage depth dose difference (PDD) between Monte Carlo method and the measurement method.Methods Based on the detail treatment head structure designing by the manufacture,the BEAMnrc Monte Carlo code was used to simulate the 6 MV photon beams of a Siemens Primus linear accelerator.DOSXYZnrc program generated 6 MV X-ray parameters such as PDD,and it was measured by MP3 three-dimensional water of PTW corporation phantom.The deviation of PDD was calculated using formulas ((measured value-simulation algorithm value)/measured value × 100%).Results Distance from the surface of the water was less than 1.2 cm,the deviation of PDD was > 2%.Distance from the surface greater than 1.2 cm,the deviation of PDD was < 2%.Conclusion In the built-up areas,PDD obtained by the Monte Carlo simulation algorithm is more accurate.

4.
Chinese Journal of Radiological Medicine and Protection ; (12): 220-224, 2011.
Article in Chinese | WPRIM | ID: wpr-412804

ABSTRACT

Objective To analyze the influence of the mean energy and the full-width of half msximum(FWHM)of incident electron beam intensity distilbution(assumed Gaussian distribution)on depth dose curves and off-axis ratios and to derive a most optimal combination of mean energy and FWHM of incident electron beam intensity distribution.Methods The study simulated 6 MV photon beam produced by Varian 600C medical linear accelerator with OMEGA/EGSnrc by matching the relative error of calculated and measured depth dose curves past depth of maximum dose and off-axis ratios at a depth of 10.0 cm in water within 2%.Results The depth dose curves were relatively insensitive to the mean energy past depth of maximum dose and the FWHM of the incident electron beam intensity distribution.Dose profiles were sensitive tO the mean energy and FWHM.The dose profiles horns decreased as the mean energy and tlle FWHM of the ineident electron beam intensity distilbution increased.The calculated value of the depth dose curves matched well with the measured value.The calculated value of the off-axis ratio was consistent with the measured value within the radiation field.However, the maximum errors of individual measurement points in the penumbra region and OUt of the field reached 18.5%.Conclusions In the field.the most optimal combination of mean energy and FWHM of incident electron beam intensitv distribution Can be derived, however,can not be derived out of the field and in the penumbra region.

5.
Rev. imagem ; 32(1/2): 13-19, jan.-jun. 2010. ilus, tab, graf
Article in Portuguese | LILACS | ID: lil-613229

ABSTRACT

OBJETIVO: Para comparar o benefício da mamografia e o risco de câncer induzido por raios X, devese investigar as doses absorvidas. Nesse sentido, determinaram-se espectros dos raios X de um mamógrafo clínico, para combinação alvo/filtro Mo/Mo, utilizando espectrometria Compton, e avaliou-se a dose glandular média (DGM) em um simulador de mamas de BR-12. MATERIAL E MÉTODO:Um detector de CdTe foi usado para espectrometria dos raios X espalhados a ~ 100° por um cilindrode PMMA, para diferentes profundidades de BR-12 e tensões entre 28 e 35 kV. Após a reconstrução do espectro dos feixes primários, a partir dos medidos, determinou-se a DGM. RESULTADOS:Obtiveram-se camadas semirredutoras de 0,39 a 0,45 mmAl (espectrometricamente) e de 0,38 a0,42 mmAl (com câmara de ionização) para os feixes incidentes na superfície do simulador. A DGMNnormalizada por unidade de kerma no ar incidente, na superfície de BR-12, variou de 0,156 a 0,226.CONCLUSÃO: Os valores de DGMN variaram de 1% a 3%, em relação aos obtidos com câmara. O método empregado é uma boa alternativa para a determinação de DGMN e da distribuição de dose em profundidade em simuladores mamários.


OBJECTIVE: To compare mammography benefit and X-ray induced cancer risk, one should investigate absorbed doses. For this purpose, spectra of primary X-ray beams from a clinical mammographyequipment were determined for Mo/Mo target/filter combination,using Compton spectrometry and average glandular dose (AGD) in a BR-12 breast phantom was evaluated. MATERIAL AND METHOD: A CdTe detector was used for spectrometry of X-ray beams Compton scattered around 100°, by a PMMA cylinder, for different depths inside the BR-12 phantom and voltages between 28 and 35 kV. The reconstruction of the primary beam spectra from the measured ones was followed by the determination of AGD. RESULTS: Half-value layer values determined by spectra resulted 0.39 to 0.45 mmAl, and by ionization chamber, 0.38 to 0.42 mmAl, respectively, for beams incident on the phantom surface. The AGDN normalized per unitary incident air kerma, on the BR-12 surface, ranged from 0.156 to 0.226. CONCLUSION: The percentage deviation of AGDN, relative to the chamber measurements, ranged from 1% to 3%. The utilized method is a good alternative to determineAGDN and depth-dose distributions in breast phantoms.


Subject(s)
Early Detection of Cancer , Spectrometry, X-Ray Emission/methods , Mammography , Breast Neoplasms/diagnosis , Breast Neoplasms/prevention & control , Radiometry/adverse effects , Radiometry/methods
6.
Chinese Journal of Radiation Oncology ; (6): 331-334, 2010.
Article in Chinese | WPRIM | ID: wpr-389077

ABSTRACT

Objective To evaluate the dosimetry of high-energy electron beams by using GafChromic EBT film. Methods The percent depth doses of electron beams of 4 MeV,6 MeV,8 MeV,10MeV, 12 MeV and 15 MeV were measured with EBT. The results were then compared with the measurements with diode detector in RFA and parallel plate chamber in water tank. Results The percent depth dose curves using EBT film had a good agreement with those using the other two detectors. Furthermore, no differences were found between up-right and tilt setup methods. When film upper edge is higher than water surface, a sharp drop of measurement results using EBT film was observed in comparison with those from diode detector in build-up region. Conclusions EBT film can be applied to measure percent depth doses of high-energy electron beams. During the EBT film measurements, the film should be tilted at the angle of 5degrees to the central axis of the field. When choosing up-right setup method, the edge of the film should be parallel to the water surface.

7.
Radiol. bras ; 42(4): 249-253, jul.-ago. 2009. graf
Article in English, Portuguese | LILACS | ID: lil-524404

ABSTRACT

OBJETIVO: Utilizar o código PENELOPE e desenvolver geometrias onde estão presentes heterogeneidades para simular o comportamento do feixe de fótons nessas condições. MATERIAIS E MÉTODOS: Foram feitas simulações do comportamento da radiação ionizante para o caso homogêneo, apenas água, e para os casos heterogêneos, com diferentes materiais. Consideraram-se geometrias cúbicas para os fantomas e geometrias em forma de paralelepípedos para as heterogeneidades com a seguinte composição: tecido simulador de osso e pulmão, seguindo recomendações da International Commission on Radiological Protection, e titânio, alumínio e prata. Definiram-se, como parâmetros de entrada: a energia e o tipo de partícula da fonte, 6 MV de fótons; a distância fonte-superfície de 100 cm; e o campo de radiação de 10x 10 cm². RESULTADOS: Obtiveram-se curvas de percentual de dose em profundidade para todos os casos. Observou-se que em materiais com densidade eletrônica alta, como a prata, a dose absorvida é maior em relação à dose absorvida no fantoma homogêneo, enquanto no tecido simulador de pulmão a dose é menor. CONCLUSÃO: Os resultados obtidos demonstram a importância de se considerar heterogeneidades nos algoritmos dos sistemas de planejamento usados no cálculo da distribuição de dose nos pacientes, evitando-se sub ou superdosagem dos tecidos próximos às heterogeneidades.


OBJECTIVE: The PENELOPE code was utilized to simulate irradiation geometries where heterogeneities are present and to simulate a photon beam behavior under these conditions. MATERIALS AND METHODS: For the homogeneous case, the ionizing radiation behavior was simulated only with water, and different materials were introduced to simulate heterogeneous conditions. Cubic geometries were utilized for the homogeneous phantoms, and parallelepiped-shaped geometries for the heterogeneities with the following composition: bone and lung tissue simulators, as recommended by the International Commission on Radiological Protection, and titanium, aluminum and silver. Input parameters were defined as follows: energy and type of source, 6 MV photons; source-surface distance=100 cm; and radiation field of 10x 10 cm². RESULTS: Percentage depth-dose curves were obtained for all the cases. As result, it was observed that for high electronic density materials, such as silver, the absorbed dose is higher than the absorbed dose in the homogeneous phantom, and for the lung tissue simulator, it is lower. CONCLUSION: Results clearly demonstrate the relevant role of heterogeneities in the treatment planning system algorithms utilized in the calculation of dose distribution in patients, increasing the accuracy of the dose delivered to the tumor and avoiding unnecessary irradiation of healthy tissues.


Subject(s)
Computer Simulation , Computing Methodologies , Photons , Radiometry , Software , Monte Carlo Method , Radiation, Ionizing
8.
Chinese Journal of Radiation Oncology ; (6): 226-229, 2008.
Article in Chinese | WPRIM | ID: wpr-401544

ABSTRACT

Objective To develop a measurement method of dosimetric parameters for Hi-ART tomotherapy unit. Methods Percentage depth doses and beam profiles were measured using the dedicated mini water phantom, and compared to the results of 6 MV X-ray from Primus accelerator. Following the AAPM TG51 protocol, absolute dose calibration was carried out under SSD of 85 cm at depth of 1.5 cm for field of 5 cm ×40 cm. The output linearity and reproducibility were evaluated. The output variation with the gantry rotation was also investigated using 0.6 cm3 ion chamber in cylindrical perplex phantom and on-board MVCT detectors. Leaf fluence output factors were quantified for the leaf of interest and its adjacent leaves.Results The buildup depth was around 1.0 cm. The PDD values at 10 cm for Hi-ART and Primus were 59.7% and 64.7%, respectively. Varying with the field width, the lateral and longitudinal beam profiles were not so homogeneous as the Primus fields. The measured dose rate was 848.38 cGy/min. The fitted lint(sec) ,with a relative coefficient of 0. 999. The maximum deviation and standard deviation of output were 1.6% and less than 0.5% ; The maximum deviation and standard deviation of output changed by gantry angle were 1.1% and 0.5 % , respectively. Leaf fluence output factors did not increase significantly when leaves were opened beyond the two adjacent leaves. Conclusions Hi-ART Tomotherapy unit has a very high dose output and inhomogeneous beam profiles owing to its special design of the treatment head. This may be useful in dose calculation and treatment delivery.

9.
Korean Journal of Medical Physics ; : 21-34, 2008.
Article in English | WPRIM | ID: wpr-203479

ABSTRACT

The parallel Monte Carlo electron and photon transport (PMCEPT) code [Kum and Lee, J. Korean Phys. Soc. 47, 716 (2006)] for calculating electron and photon beam doses has been developed based on the three dimensional geometry defined by computed tomography (CT) images and implemented on the Beowulf PC cluster. Understanding the limitations of Monte Carlo codes is useful in order to avoid systematic errors in simulations and to suggest further improvement of the codes. We evaluated the PMCEPT code by comparing its normalized depth doses for electron and photon beams with those of MCNP5, EGS4, DPM, and GEANT4 codes, and with measurements. The PMCEPT results agreed well with others in homogeneous and heterogeneous media within an error of 1~3% of the dose maximum. The computing time benchmark has also been performed for two cases, showing that the PMCEPT code was approximately twenty times faster than the MCNP5 for 20-MeV electron beams irradiated on the water phantom. For the 18-MV photon beams irradiated on the water phantom, the PMCEPT was three times faster than the GEANT4. Thus, the results suggest that the PMCEPT code is indeed appropriate for both fast and accurate simulations.


Subject(s)
Electrons , Water
10.
Korean Journal of Medical Physics ; : 80-88, 2008.
Article in Korean | WPRIM | ID: wpr-203472

ABSTRACT

Recent radiotherapy dose planning system (RTPS) generally adapted the kernel beam using the convolution method for computation of tissue dose. To get a depth and profile dose in a given depth concerened a given photon beam, the energy spectrum was reconstructed from the attenuation dose of transmission of filter through iterative numerical analysis. The experiments were performed with 15 MV X rays (Oncor, Siemens) and ionization chamber (0.125 cc, PTW) for measurements of filter transmitted dose. The energy spectrum of 15 MV X-rays was determined from attenuated dose of lead filter transmission from 0.51 cm to 8.04 cm with energy interval 0.25 MeV. In the results, the peak flux revealed at 3.75 MeV and mean energy of 15 MV X rays was 4.639 MeV in this experiments. The results of transmitted dose of lead filter showed within 0.6% in average but maximum 2.5% discrepancy in a 5 cm thickness of lead filter. Since the tissue dose is highly depend on the its energy, the lateral dose are delivered from the lateral spread of energy fluence through flattening filter shape as tangent 0.075 and 0.125 which showed 4.211 MeV and 3.906 MeV. In this experiments, analyzed the energy spectrum has applied to obtain the percent depth dose of RTPS (XiO, Version 4.3.1, CMS). The generated percent depth dose from 6x6 cm2 of field to 30x30 cm2 showed very close to that of experimental measurement within 1% discrepancy in average. The computed dose profile were within 1% discrepancy to measurement in field size 10x10 cm, however, the large field sizes were obtained within 2% uncertainty. The resulting algorithm produced x-ray spectrum that match both quality and quantity with small discrepancy in this experiments.


Subject(s)
Particle Accelerators , Uncertainty
11.
Chinese Medical Equipment Journal ; (6)2003.
Article in Chinese | WPRIM | ID: wpr-592918

ABSTRACT

Objective To fit the functional relation between Percentage Depth Dose and depth by Newton Interpolation. Methods After analyzing the data of Percentage Depth Dose from different manufacturers' linear accelerators, the average of Percentage Depth Dose with same depth was calculated, and then the average data was determined. The interval was set and the interpolation node was selected for simulating the cubic polynomial with PDD and depth. Results Comparing the calculated values by the function with the measured ones, the error was less than 1%. Conclusion The function simulated with Newton Interpolation is applicable in routine clinical radiotherapy and research.

12.
Chinese Journal of Radiation Oncology ; (6)1993.
Article in Chinese | WPRIM | ID: wpr-552217

ABSTRACT

Objective Clinical application of electrons often involves some beam in which the field size varies with the applicators. The work was done to understand the electron beam characteristics in different field sizes. Methods Percent depth dose and the dose output factor were measured for square and rectangular fields at 100?cm source to surface distance ( SSD ) . Central axis percent depth dose (PDD) measurements were made using the RFA 300 three dimensional radiation field analyzer with a shielded p type diode detector . The dose output factors were measured with the RFA 300 three dimensional radiation field analyzer with a PTW 0.1?cm 3 chamber and a Farmer 2570/1 dosimeter with a 2571 ion chamber in a water phantom. Results The measurements showed that the depth dose curves and the output factors were sometimes dependent on how the field sizes were formed. The change in depth dose with field size was more pronounced in the high energy beams than the low energy ones. However, the output factor did not show any systematic energy dependence because each applicator had it's own X ray jaw setting at each energy. Conclusions When using small inserted apertures to treat small lesions, we should verify the conformation of depth dose and output factors. In this case, we should use applicator dependent output factors at each energy to calculate the monitor units for irradiation.

13.
Journal of the Korean Society for Therapeutic Radiology ; : 131-142, 1991.
Article in English | WPRIM | ID: wpr-163395

ABSTRACT

A comprehensive set of dosimetric measurements has been made on the Varian Clinac 1800 15 MV photon beam. Beam quality percentage depth dose, dose in the build up region, output, symmetry and flatness, transmission through lead (Cerrobend), tray attenuation, isodose curves for the open and wedged fields were measured using 3 dimensional water phantom dosimetry system (including film densitometer system) and polystryrence phantoms. These dosimetric measurements sufficiently characterized the beam to permit clinical use. The depth dose characteristics of photon beam is dmax of 3.0 cm and percentage depth dose of 76.8% at 10 cm, 100 cm source-surface distance, field size of 10 x 10 cm2 for 15 MV X-ray beam. The Output factors ranged 0.927 for 4 X 4 cm2 field to 1.087 for 35 X 35 cm2 field. The build-up level of maximum dose was at 3.0 cm and surface dose was approximately 15.5% for a field size 10 x 10 cm2 . The stability of output is within+/-1% and flatness and symmetry are within+/-3%. The half value thickness (HVL) of lead is 13 mm, which corresponds to an attenuation coefficient of 0.053 mm-1. These figures compare favorably with the manufacturer's specifications.


Subject(s)
Particle Accelerators , Water
14.
Journal of the Korean Society for Therapeutic Radiology ; : 101-112, 1989.
Article in Korean | WPRIM | ID: wpr-51205

ABSTRACT

The treatment planning and dosimetry of small fields for stereotactic radiosurgery with 10 MV x-ray isocentrically mounted linear accelerator is presented. Special consideration in this study was given to the variation of absorbed dose with field size, the central axis percent depth doses and the combined moving beam dose distributon. The collimator scatter correction factors of small fields (1x1~3x3 cm2) were measured with ion chamber at a target chamber distance of 300cm where the projected fields were larger than the polystyrene buildup caps and it was calibrated with the tissue equivalent solid state detectors of small size (TLD, PLD, ESR and semiconductors). The central axis percent depth doses for 1x1 and 3x3 cm2 fields could be derived with the same acuracy by interpolating between measured values for larger fields and calcu1ated zero area data, and it was also calibrated with semiconductor detectors. The agreement between experimental and calculated data was found to be under +/-2% within the fields. The three dimensional dose planning of stereotactic focusing irradiation on small size tumor regions was performed with dose planning computer system (Therac 2300) and was verified with film dosimetry. The more the number of strips and the wider the angle of arc rotation, the larger were the dose delivered on tumor and the less the dose to surrounding the normal tissues. The circular cone, we designed, improves the alignment, minimizes the penumbra of the beam and formats ball shape of treatment area without stellate patterns. These dosimetric techniques can provide adequate physics background for stereotactic radiosurgery with small radiation fields and 10 MV x-ray beam.


Subject(s)
Axis, Cervical Vertebra , Computer Systems , Film Dosimetry , Particle Accelerators , Polystyrenes , Radiosurgery , Semiconductors
15.
Journal of the Korean Society for Therapeutic Radiology ; : 85-92, 1988.
Article in English | WPRIM | ID: wpr-65961

ABSTRACT

For the physical characterization of neutron beam, dosimetric measurements had been performed to obtain physical data of KCCH cyclotron-produced neutrons for clinical use. The results are presented and compared with the data of other institutions from the literatures. The central aixs percent depth dose, build-up curves and open and wedge isodose curve values are intermediate between that of a 4 and 6 MV X-ray. The build-up level of maximum dose was at 1.35 cm and entrance dose was approximately 40%. Flatness of the beam was 9% at Dmax and less than+/-3% at the depth of 80% isodose line. Penumbra begond the 20% line is wider than corresponding photon beam. The output factors ranged 0.894 for 6 x 6 cm field to 1.187 for 30 x 30 cm field. gamma contamination of neutron beam was 4.9% at 2 cm depth in 10 x10 cm field.


Subject(s)
Cyclotrons , Neutrons
SELECTION OF CITATIONS
SEARCH DETAIL