Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 454
Filter
1.
Arq. bras. oftalmol ; 88(1): e2023, 2025. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1568852

ABSTRACT

ABSTRACT Purpose: This study aimed to analyze variations in intraoperative corneal thickness during corneal cross-linking in patients with keratoconus and to investigate its possible correlation with presurgical maximal keratometry (Kmax) and pachymetry. Methods: This was a prospective case series. We used a method similar to the Dresden protocol, with the application of hydroxypropyl methylcellulose 0.1% hypo-osmolar riboflavin in corneas between 330 and 400 µm after epithelium removal. Corneal thickness was measured using portable calipers before and immediately after epithelium removal, and 30 and 60 min after the procedure. Results: The 30 patients in this study were followed up for one year. A statistically significant difference was observed in pachymetry values during the intraoperative period (p<0.0001) and an increase of 3.05 µm (95%C1: 0.56-5.54) for each diopter was seen after epithelium removal (p0.019). We found an average Kmax difference of —2.12 D between men and women (p0.013). One year after treatment, there was a statistically significant reduction in pachymetry (p<0.0001) and Kmax (p0.0170) values. Conclusions: A significant increase in pachymetry measurements was seen during the procedure, and most patients showed a regression in Kmax and pachymetry values one year after surgery.

2.
Acta Universitatis Medicinalis Anhui ; (6): 331-335,343, 2024.
Article in Chinese | WPRIM | ID: wpr-1017250

ABSTRACT

Objective To investigate the effects of indirubatin derivative E804 on proliferation and migration of non-small cell lung cancer(NSCLC)A549 cells,and to elucidate the possible mechanism of Nrf2-HO-1/GPX4 pathway.Methods Lung cancer A549 cells were used as the cell model.The proliferation and migration of differ-ent specific inhibitors(Nec-1,CQ,Z-VAD,DFO,Fer-1 and Lip-1)in 0,10 μmol/L E804 and 10 μmol/L E804+groups were observed by MTT and cell scratch assay.The contents of reactive oxygen species(ROS)were de-tected by DCFH-DA fluorescence probe method,the contents of Fe2+were detected by colorimetric method,the contents of reduced glutathione(GSH)were detected by spectrophotometry,and the contents of malondialdehyde(MDA)were detected by micromethod.The expression levels of SLC7A11,Transferrin,GPX4,SLC40A1,Nrf2 and HO-1 were detected by Western blot in cells of 0,2.5,5 and 10 μmol/L E804 groups.Results Compared with the control group(0 μmol/L E804),2.5,5 and 10 μmol/L E804 significantly increased intracellular ROS,Fe2+and MDA levels,and decreased intracellular GSH content(P<0.01).Meanwhile,the expression levels of SLC7A11,GPX4,SLC40A1,Nrf2 and HO-1 significantly decreased(P<0.01),and the expression level of Transferrin increased(P<0.05).Compared with the 10 μmol/L E804 group alone,the apoptosis inhibitor(Z-VAD)group and the ferroptosis inhibitor(DFO,Fer-1 and Lip-1)group could significantly reverse the inhibition of proliferation and migration of A549 cells by 10 μmol/L E804(P<0.01).Conclution E804 can induce ferrop-tosis and inhibit the proliferation and migration of A549 cells,which may be related to the inhibition of Nrf2-HO-1/GPX4 pathway.

3.
Chinese Journal of Analytical Chemistry ; (12): 267-276,中插19-中插27, 2024.
Article in Chinese | WPRIM | ID: wpr-1017651

ABSTRACT

"MS/MS spectrum to structure"plays a critical role in the confirmative identification of complicated matrices and is currently regarded as an extremely challenging endeavor.MS/MS information provides vital clues to structural identification.In this study,a strategy was proposed to facilitate unambiguous identification through matching MS3 with MS2 spectra.Initially,MS3 spectra of the featured ions(c-and y-type ions)generated by the decomposition of ester functional group in esters and the MS2 spectrum of the structural unit([M-H]-)were all captured on the Qtrap-MS platform equipped with two tandem-in-space collision cells,including the second quadrupole cell(q2)and linear ion trap(LIT)chambers(actually the third quadrupole unit).Subsequently,the MS/MS spectrum matching between MS3 spectra of the ester compound and MS2 spectra of the structural unit(s)were achieved.As a result,the findings corresponding to MS3 and MS2 spectra matching were summarized.Finally,based on HR-MS/MS information of total salvianolic acid derivatives(TSA),36 kinds of compounds were preliminarily identified through matching with literature information and database retrieval.The applicability of MS3 and MS2 spectra matching strategy was further justified by the confirmative identification of phenolic acid compounds(Rosmarinic acid and salvianolic acid B)in TSA.Above all,MS3 and MS2 spectra matching strategy was quite meaningful towards advancing"MS/MS spectrum to structure"analysis through recognizing and identifying featured fragment ions,and also provided inspiration and new insights for the structural characterization.

4.
Article in Chinese | WPRIM | ID: wpr-1020549

ABSTRACT

Recent studies show that graphene and its derivatives have good physical and chemical properties and biocompatibility,and can promote cell proliferation and stem cell differentiation.The process of pulp regeneration involves the proliferation and differen-tiation of seed cells,suggesting that graphene and its derivatives have the potential applications perspective in pulp regeneration.How-ever,it has not been reported whether the physical and chemical properties of graphene and its derivatives are suitable for pulp cavity or root canal environment and its effect on pulp regeneration seed cells.This article reviews the physical and chemical properties,cyto-logical effects and the application of graphene and its derivatives in tissue engineering,and provides a basis for its application in dental pulp regeneration.

5.
Article in Chinese | WPRIM | ID: wpr-1021604

ABSTRACT

BACKGROUND:Graphene is the thinnest,strongest,and toughest type of two-dimensional new crystal material,demonstrating significant advantages in biomedical applications.Angiogenesis and vascularization of bone are key factors in tissue repair and regeneration,and are effective ways to address vascular and osteogenic issues. OBJECTIVE:To review the characteristics and mechanisms of graphene and its derivatives in promoting angiogenesis activity and vascularizing bone,in order to provide a reference for their clinical application in vascular tissue repair and regeneration. METHODS:Using a computer to search for relevant literature included in PubMed,ScienceDirect,CNKI,and Wanfang databases,the Chinese search terms were"grapheme","angiogenesis,vascularization","vascularized bone",and"endothelial cells",while the English search terms were"graphene""angiogenesis OR vascularization""vascularized bone""endothelial cells".After excluding literature unrelated to the topic of the article,according to the inclusion and exclusion criteria,62 articles were ultimately included for result analysis. RESULTS AND CONCLUSION:(1)At present,graphene oxide has been studied more and is the most widely used in graphene and its derivatives.(2)Graphene and its derivatives are suitable for heart,bone,nerve,and wound healing related diseases.(3)Graphene and its derivatives have excellent physical and chemical properties and biological properties,but they have potential cytotoxicity.We should pay attention to its biological safety in application.(4)The application of graphene and its derivatives requires further research to demonstrate the optimal size and concentration and measures to reduce toxicity.(5)On the cellular level,graphene and its derivatives can promote angiogenic activity by tip endothelial cell phenotype,mesenchymal stem cell adhesion and proliferation, and vascular smooth muscle cell growth.(6)On the molecular level,graphene and its derivatives can increase the expression of vascular endothelial growth factor,basic fibroblast growth factor,hepatocyte growth factor and activate reactive oxygen species/nitric oxide synthase/nitric oxide signaling pathway,lysophosphatilate R6/Hippo-YAP pathway,stromal cell-derived factor-1/vascular endothelial growth factor and ZEB 1/Notch1 pathway.(7)Grapheme oxide and graphene oxide-copper phosphorylated extracellular regulatory protein kinase and activated hypoxia-inducible factor-1,thereby promoting the up-regulation of vascular endothelial growth factor and bone morphogenetic protein-2 expression,and promoting angiogenesis and vascularized bone.(8)In summary,graphene and its derivatives,especially graphene oxide,have great application prospects in the repair and regeneration of vascularized tissues due to their excellent biological properties,good angiogenesis and vascularized bone ability.

6.
Cancer Research and Clinic ; (6): 184-190, 2024.
Article in Chinese | WPRIM | ID: wpr-1030433

ABSTRACT

Objective:To investigate the level of the transporter RNA (tRNA) derivative tRF-5026a in the serum of breast cancer patients and its value for the diagnosis of breast cancer, and to investigate its effect on the biological functions of breast cancer cells in vitro and the possible mechanisms.Methods:Sixty female breast cancer patients (breast cancer group) hospitalized in Jiangsu Cancer Hospital from January 2016 to February 2019 and 20 healthy women undergoing physical examination during the same period (healthy control group) were retrospectively selected. The relative expression of serum tRF-5026a in the study subjects was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The receiver operating characteristic (ROC) curve of serum tRF-5026a level for the diagnosis of breast cancer was drawn with pathological diagnosis as the gold standard. tRF-5026a mimics (tRF-5026a group) and negative control sequences (negative control group) were transiently transfected into MCF-7 and BT549 cells by lipofectamine method; CCK-8 assay and 5-ethynyl-2-deoxyuridine (EdU) assay were used to detect the ability of cell proliferation in cells of each group; cell apoptosis in cells of each group was detected by flow cytometry; the abilities of cell invasion and migration in cells of each group were detected by Transwell assay; the expressions of epithelial mesenchymal transition-related proteins in cells of each group were detected by Western blotting.Results:The relative expressions of tRF-5026a [ M ( Q1, Q3)] in serum of healthy control group and breast cancer group were 16.58 (6.37, 26.31) and 3.46 (0.32, 9.01), with a statistically significant difference ( Z = -4.27, P < 0.001). ROC curve analysis showed that the area under the curve (AUC) for diagnosis of breast cancer by the relative expression of serum tRF-5026a was 0.820 (95% CI: 0.722-0.918), with an optimal cut-off value of 9.082, and the corresponding sensitivity and specificity were 75.0 % and 76.7%, respectively. The apoptosis rates of MCF-7 cells in the tRF-5026a group and the corresponding negative control group were (16.52±0.51)% and (12.28±1.75)%, and the BT549 cells were (13.27±2.18)% and (8.86±0.29)%, the differences were not statistically significant (both P > 0.05). MCF-7 and BT549 cells in the tRF-5026a group had lower proliferative, invasive and migratory abilities than cells in the corresponding negative control group (all P < 0.05). MCF-7 and BT549 cells in the tRF-5026a group had lower protein expressions of N-cadherin, matrix metalloproteinase (MMP)-9 and MMP-3 than cells in the corresponding negative control group. Conclusions:tRF-5026a has low level in the serum of breast cancer patients and it may be an indicator for breast cancer diagnosis. tRF-5026a can inhibit the proliferation, invasion and migration of breast cancer MCF-7 and BT549 cells in vitro, which may be related to the regulation of epithelial mesenchymal transition.

7.
Article in Chinese | WPRIM | ID: wpr-1030962

ABSTRACT

This article reviews relevant literature on the prevention and treatment of cancer with hesperidin published in the past 10 years by searching electronic databases such as China National Knowledge Infrastructure(CNKI), Wanfang, and PubMed, and summarizes the research progress on the anticancer mechanism of hesperidin. Hesperidin has a wide range of pharmacological effects, including anti-inflammatory, antioxidant, antibacterial, antiviral, anticancer, immune-regulatory, anti-radiation, neuroprotective and cardiovascular protective properties and so on. Its anticancer mechanisms mainly include inhibiting cancer cell proliferation, promoting apoptosis, reducing angiogenesis, inhibiting invasion and migration of cancer cells, regulating immunity and autophagy, and exerting antioxidant and anti-inflammatory effects. As a broad-spectrum anticancer drug, hesperidin manifests chemo-preventive and therapeutic effects across various cancers, contingent upon its multifaceted anticancer mechanisms. Furthermore, this article summarizes the synergistic effects of hesperidin in combination with cisplatin, doxorubicin, cyclophosphamide and paclitaxel. It elucidates that hesperidin can enhance the cytotoxicity of these anticancer drugs against cancer cells while mitigating drug resistance and adverse side effects. Nonetheless, the clinical use is somewhat constrained due to its poor water solubility and limited bioavailability. Therefore, this article also outlines the current strategies for enhancing hesperidin's bioavailability, including structural modification, combination with other chemical substances, and utilization of nano drug carriers.The discovery of derivatives of hesperidin not only preserves the anticancer efficacy of hesperidin, but also effectively overcomes the shortcomings of poor water solubility and low bioavailability of hesperidin, effectively predicting the good application prospects of hesperidin and its derivatives.

8.
China Pharmacy ; (12): 536-541, 2024.
Article in Chinese | WPRIM | ID: wpr-1012569

ABSTRACT

OBJECTIVE To explore the neuroprotective effect and possible mechanism of celastrol (Cel) and its derivatives (Cel-1, Cel-2) in terms of neuroinflammation and oxidative damage. METHODS Neuroinflammation model of microglial BV2 cells was induced by 1 μg/mL lipopolysaccharide (LPS); oxidative damage model of human neuroblastoma SH-SY5Y cells was induced by 200 μmol/L hydrogen peroxide (H2O2). The toxicity of different concentrations of Cel, Cel-1 and Cel-2 (0.625-20 μmol/L) to the two types of cells was investigated. The levels of nitric oxide (NO), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 in BV2 cells induced by LPS at safe concentrations (0.039-0.625 μmol/L) were all detected. The survival rate of SH-SY5Y cells induced by H2O2 was also determined. The expression levels of phosphoinositide 3-kinase (PI3K), p-PI3K, protein kinase B (Akt), p-Akt, cystatinase 3 (caspase-3), B-cell lymphoma 2 (Bcl-2) and Bcl-2-related X protein (Bax) in SH- SY5Y cells induced by H2O2 at 0.156, 0.313, 0.625 μmol/L of active compound 2 were all detected. RESULTS In the concentration gradient range between 0.039 and 0.625 μmol/L, the results of neuroinflammation model experiments showed that Cel, Cel-1 and Cel-2 could reduce the contents of NO, TNF-α, IL-1β, and IL-6 in culture medium of BV2 cells (P<0.05 or P< 0.01); their IC50 values for neuroinflammation were (0.25±0.04), (0.61±0.14) and (0.11±0.02) μmol/L respectively. Meanwhile, all of them could reverse the phenomenon of decreased cell survival rate after H2O2 treatment in the oxidative damage experiments at a certain concentration (P< 0.05 or P<0.01), with neuroprotective EC50 values of (0.43± XJC2023009) 0.08), (0.45±0.04) and (0.28±0.03) μmol/L, respectively.Induced by H2O2, the phosphorylation of PI3K and Akt protein, protein expressions of Bcl-2 and Bcl-2/Bax ratio were all increased significantly (P<0.05 or P<0.01), while the protein expressions of caspase-3 and Bax were decreased significantly (P<0.05 or P<0.01). CONCLUSIONS Cel, Cel-1, and Cel-2 all have significant neuroprotective activities at certain concentrations, and Cel-2 shows the most significant protective effect. The mechanism of action of Cel-2 may be related to regulating the PI3K/Akt and caspase-3/Bcl-2/Bax signaling pathways, reducing the inflammatory response, oxidative stress damage and inhibiting neuronal apoptosis.

9.
Article in English | WPRIM | ID: wpr-1011008

ABSTRACT

Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.


Subject(s)
Oleanolic Acid , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Triterpenes , Anti-Bacterial Agents/pharmacology
10.
Braz. j. biol ; 84: e254234, 2024. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1364499

ABSTRACT

Due to the severe side effects revealed by most of the currently used antidiabetic medicines, search for finding new and safe drugs to manage diabetes is continued. Naphthoquinones possessing strong antioxidant properties have been employed as candidates for diabetes therapy. Present study is aimed at finding the antioxidant and hypoglycaemic potential of some novel derivatives of 2-phenylamino-1,4-naphthoquinones (PAN) including chloro, nitro, methyl and bromo (5a-d) derivatives synthesized by single pot experiment. Product crystals were purified by TLC and characterized by FT-IR. The antioxidant potential of the compounds was assayed through DPPH radical scavenging and reducing power activities noted as UV-vis. absorbance. The DPPH assay has showed the powerful antioxidant activity of nitro and bromo derivatives, while the nitro derivative showed the significant reduction potential towards FRAP assay. Hypoglycaemic potential of the compounds was studied in rat animal model. All synthesized compounds revealed better hypoglycaemic activity; however, the chloro-derivative exhibited the more potent hypoglycaemic activity showing about 43% reduction in the mean blood glucose levels of the treated animals. As the bioreduction of naphthoquinones may be influenced by changing its redox properties, it has been noticed that the e-donating resonance effect (+R) of 'chloro' group has shown the significant effects on biological activity through stabalization of its imine form which limits the potential of generation of free radicals during bioreduction of quinones and thus has been proposed as the reason of its hypoglycaemic activity. Future studies employing the properties of e-donating groups of PAN may optimize the drug-receptor interaction for better drug designing and drug development strategies against diabetes and also for the clinical trials.


Em razão dos graves efeitos colaterais causados pela maioria dos medicamentos antidiabéticos atualmente utilizados, continua a busca por novos medicamentos seguros para o controle do diabetes. As naftoquinonas, que possuem fortes propriedades antioxidantes, têm sido empregadas como candidatas à terapia do diabetes. O presente estudo visa encontrar o potencial antioxidante e hipoglicemiante de alguns novos derivados de 2-fenilamino-1,4-naftoquinonas (PAN), incluindo derivados de cloro, nitro, metil e bromo (5a-d) sintetizados por experimento em pote único. Os cristais do produto foram purificados por TLC e caracterizados por FT-IR. O potencial antioxidante dos compostos foi testado por meio de atividades de sequestro de radicais DPPH e redução de energia observada como absorção no UV-vis. O ensaio DPPH mostrou a poderosa atividade antioxidante dos derivados nitro e bromo, enquanto o derivado nitro mostrou o potencial de redução significativo para o ensaio FRAP. O potencial hipoglicêmico dos compostos foi estudado em modelo animal de rato. Todos os compostos sintetizados revelaram melhor atividade hipoglicemiante; no entanto, o derivado cloro apresentou atividade hipoglicêmica mais potente, com redução de 43% nos níveis médios de glicose no sangue dos animais tratados. Como a biorredução de naftoquinonas pode ser influenciada pela alteração de suas propriedades redox, notou-se que o efeito da doação eletrônica por ressonância (+R) do grupo "cloro" tem sido significativo na atividade biológica por meio da estabilização de sua forma imina, que limita o potencial de geração de radicais livres durante a biorredução de quinonas, e, portanto, tem sido proposto como a razão de sua atividade hipoglicemiante. Estudos futuros empregando as propriedades de grupos de doação eletrônica de PAN podem otimizar a interação droga-receptor para melhor planejamento de medicamentos e estratégias de desenvolvimento de medicamentos contra o diabetes e também para os ensaios clínicos.


Subject(s)
Rats , Models, Animal , Diabetes Mellitus , Drug Development , Hypoglycemic Agents , Antioxidants
SELECTION OF CITATIONS
SEARCH DETAIL