Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Braz. j. med. biol. res ; 44(11): 1156-1163, Nov. 2011. ilus
Article in English | LILACS | ID: lil-604283

ABSTRACT

We evaluated the potential neuroprotective effect of 1-100 µM of four organoselenium compounds: diphenyl diselenide, 3’3-ditri-fluoromethyldiphenyl diselenide, p-methoxy-diphenyl diselenide, and p-chloro-diphenyl diselenide, against methylmercury-induced mitochondrial dysfunction and oxidative stress in mitochondrial-enriched fractions from adult Swiss mouse brain. Methylmercury (10-100 µM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, which occurred in parallel with increased glutathione oxidation, hydroperoxide formation (xylenol orange assay) and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with diphenyl diselenide (100 µM) completely prevented the disruption of mitochondrial activity as well as the increase in TBARS levels caused by methylmercury. The compound 3’3-ditrifluoromethyldiphenyl diselenide provided a partial but significant protection against methylmercury-induced mitochondrial dysfunction (45.4 ± 5.8 percent inhibition of the methylmercury effect). Diphenyl diselenide showed a higher thiol peroxidase activity compared to the other three compounds. Catalase blocked methylmercury-induced TBARS, pointing to hydrogen peroxide as a vector during methylmercury toxicity in this model. This result also suggests that thiol peroxidase activity of organoselenium compounds accounts for their protective actions against methylmercury-induced oxidative stress. Our results show that diphenyl diselenide and potentially other organoselenium compounds may represent important molecules in the search for an improved therapy against the deleterious effects of methylmercury as well as other mercury compounds.


Subject(s)
Animals , Male , Mice , Brain/drug effects , Membrane Potential, Mitochondrial/drug effects , Mercury Poisoning, Nervous System/prevention & control , Methylmercury Compounds/toxicity , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Organoselenium Compounds/pharmacology , Oxidative Stress/drug effects , Analysis of Variance , Benzene Derivatives/pharmacology , Cell Fractionation , Models, Animal , Neuroprotective Agents/classification , Organoselenium Compounds/chemistry
2.
Genet. mol. biol ; 31(1): 128-135, 2008. ilus, graf, tab
Article in English | LILACS | ID: lil-476162

ABSTRACT

Selenium is an important dietary micronutrient and an essential component of selenoproteins and the active sites of some enzymes, although at high concentrations it is toxic. We investigated diphenyl diselenide ((C6H5)2Se2 ) for its effects on the developmental stages of Drosophila melanogaster and found that in the larval and pupae stages the toxic threshold for this compound when added to the banana-agar medium on which the larva were fed was 350 µmol. In adult flies, fed on the same media, there were no observable toxic effects below 500 µmol but there were toxic effects above 600 µmol, indicating that adult flies were more resistant to selenium intoxication. In larvae, a when diphenyl diselenide was present above the toxic threshold there was increased activation of the hsp83 heat shock protein gene. Selenium promotes oxidation of sulfhydryl groups and affects the folding of proteins and this could explain the over-expression of hsp83 because the product of this gene is involved in protein folding and defense responses, including the response to heat shock.


Subject(s)
Animals , Drosophila melanogaster/genetics , Heat-Shock Proteins , Selenium/toxicity
3.
Braz. j. med. biol. res ; 40(10): 1287-1304, Oct. 2007. ilus, tab
Article in English | LILACS | ID: lil-461366

ABSTRACT

The pharmacology of synthetic organoselenium compounds indicates that they can be used as antioxidants, enzyme inhibitors, neuroprotectors, anti-tumor and anti-infectious agents, and immunomodulators. In this review, we focus on the effects of diphenyl diselenide (DPDS) in various biological model organisms. DPDS possesses antioxidant activity, confirmed in several in vitro and in vivo systems, and thus has a protective effect against hepatic, renal and gastric injuries, in addition to its neuroprotective activity. The activity of the compound on the central nervous system has been studied since DPDS has lipophilic characteristics, increasing adenylyl cyclase activity and inhibiting glutamate and MK-801 binding to rat synaptic membranes. Systemic administration facilitates the formation of long-term object recognition memory in mice and has a protective effect against brain ischemia and on reserpine-induced orofacial dyskinesia in rats. On the other hand, DPDS may be toxic, mainly because of its interaction with thiol groups. In the yeast Saccharomyces cerevisiae, the molecule acts as a pro-oxidant by depleting free glutathione. Administration to mice during cadmium intoxication has the opposite effect, reducing oxidative stress in various tissues. DPDS is a potent inhibitor of d-aminolevulinate dehydratase and chronic exposure to high doses of this compound has central effects on mouse brain, as well as liver and renal toxicity. Genotoxicity of this compound has been assessed in bacteria, haploid and diploid yeast and in a tumor cell line.


Subject(s)
Animals , Mice , Rats , Antioxidants/pharmacology , Benzene Derivatives/pharmacology , Organoselenium Compounds/pharmacology , Porphobilinogen Synthase/antagonists & inhibitors , Saccharomyces cerevisiae/drug effects , Benzene Derivatives/toxicity , Models, Biological , Mutagenicity Tests , Organoselenium Compounds/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL