Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chinese Journal of Biotechnology ; (12): 74-85, 2023.
Article in Chinese | WPRIM | ID: wpr-970360

ABSTRACT

Droplet microfluidics technology offers refined control over the flows of multiple fluids in micro/nano-scale, enabling fabrication of micro/nano-droplets with precisely adjustable structures and compositions in a high-throughput manner. With the combination of proper hydrogel materials and preparation methods, single or multiple cells can be efficiently encapsulated into hydrogels to produce cell-loaded hydrogel microspheres. The cell-loaded hydrogel microspheres can provide a three-dimensional, relatively independent and controllable microenvironment for cell proliferation and differentiation, which is of great value for three-dimensional cell culture, tissue engineering and regenerative medicine, stem cell research, single cell study and many other biological science fields. In this review, the preparation methods of cell-loaded hydrogel microspheres based on droplet microfluidics and its applications in biomedical field are summarized and future prospects are proposed.


Subject(s)
Hydrogels/chemistry , Microfluidics/methods , Microspheres , Regenerative Medicine , Tissue Engineering/methods
2.
Genomics, Proteomics & Bioinformatics ; (4): 504-518, 2021.
Article in English | WPRIM | ID: wpr-922093

ABSTRACT

Droplet microfluidic techniques have shown promising outcome to study single cells at high throughput. However, their adoption in laboratories studying "-omics" sciences is still irrelevant due to the complex and multidisciplinary nature of the field. To facilitate their use, here we provide engineering details and organized protocols for integrating three droplet-based microfluidic technologies into the metagenomic pipeline to enable functional screening of bioproducts at high throughput. First, a device encapsulating single cells in droplets at a rate of ∼250 Hz is described considering droplet size and cell growth. Then, we expand on previously reported fluorescence-activated droplet sorting systems to integrate the use of 4 independent fluorescence-exciting lasers (i.e., 405, 488, 561, and 637 nm) in a single platform to make it compatible with different fluorescence-emitting biosensors. For this sorter, both hardware and software are provided and optimized for effortlessly sorting droplets at 60 Hz. Then, a passive droplet merger is also integrated into our pipeline to enable adding new reagents to already-made droplets at a rate of 200 Hz. Finally, we provide an optimized recipe for manufacturing these chips using silicon dry-etching tools. Because of the overall integration and the technical details presented here, our approach allows biologists to quickly use microfluidic technologies and achieve both single-cell resolution and high-throughput capability (>50,000 cells/day) for mining and bioprospecting metagenomic data.

3.
Chinese Journal of Biotechnology ; (12): 1317-1325, 2019.
Article in Chinese | WPRIM | ID: wpr-771797

ABSTRACT

Pichia pastoris is one of the most convenient and widely used heterologous protein expression systems. To further improve its ability to express heterologous proteins, we developed a high-throughput P. pastoris screening method based on droplet microfluidic and demonstrated the method by screening and obtaining mutants with enhanced xylanase expression and secretion abilities. We used PCR (Polymerase Chain Reaction) amplification to obtain a fusion fragment of xylanase xyn5 gene and green fluorescent protein gfp gene, and cloned this fragment into pPIC9K, the expression vector of Pichia pastoris, to construct the plasmid pPIC9K-xyn5-gfp that recombined the DNA fragments of xylanase and green fluorescent protein. After this plasmid entered P. pastoris GS115 by electroporation, the P. pastoris SG strain that could express xylanase and green fluorescent protein was obtained. The above-said strains were then mutagenized by atmospheric room temperature plasma and subsequently encapsulated to form single-cell droplets. After 24-hour cultivation of the droplets, microfluidic screening was carried out to obtain the mutant strain with high xylanase expression for further construction and screening of the next mutagenesis library. After five rounds of droplet microfluidic screening, a highly productive strain P. pastoris SG-m5 was obtained. The activity of the expressed xylanase was 149.17 U/mg, 300% higher than that of those expressed by the original strain SG. This strain's ability to secrete heterologous protein was 160% higher than that of the original strain. With a screening throughput of 100 000 strains per hour, the high-throughput P. pastoris screening system based on single-cell droplet microfluidic developed by the present study screens a library with million strains in only 10 hours and consumes only 100 μL of fluorescent reagent, thus reducing the reagent cost by millions of times compared with the traditional microplate screening and more importantly, providing a novel method to obtain P. pastoris with high abilities to express and secret heterologous proteins by efficient and low-cost screening.


Subject(s)
Microfluidics , Mutagenesis , Pichia , Plasmids , Polymerase Chain Reaction , Recombinant Proteins
4.
Chinese Journal of Analytical Chemistry ; (12): 1300-1307, 2016.
Article in Chinese | WPRIM | ID: wpr-498046

ABSTRACT

Digital polymerase chain reaction ( PCR) has been experiencing a rapid development during the past few years. Comparing with the traditional real-time quantitative PCR ( RT-qPCR) , using the same primer and probe, the accuracy for the absolute quantification of target gene is significantly improved. The development of digital PCR is directly related to the development of microfluidics. The integrated fluid circuit is an early combination of the microfluidics and digital PCR, which has a complicated fabrication process with high cost. Recently, researchers are trying to apply the droplet microfluidics in digital PCR, and the droplet microfluidic chip is able to generate millions of droplets within a short time. Each of these droplets containing no more than one target gene is a reaction chamber during the amplification process. After amplification, each droplet is tested to achieve the absolute quantification of the target gene. This paper reviews the recent progresses of droplet digital PCR, and the applications of droplet digital PCR in biological, medical and environmental fields.

SELECTION OF CITATIONS
SEARCH DETAIL