Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Ter. psicol ; 40(2): 231-256, jul. 2022. ilus, tab
Article in Spanish | LILACS | ID: biblio-1410236

ABSTRACT

Resumen: Existe un variado número de investigaciones que emplea nociones de la perspectiva de sistemas dinámicos (SD) para describir procesos de cambio en psicoterapia, conceptualizándolo como un sistema no lineal autoorganizado que presenta procesos emergentes y variaciones estructurales. Se realizó una revisión sistemática de la investigación en psicoterapia individual con pacientes adultos abordada desde esta perspectiva. La revisión se sustentó en la metodología PRISMA rastreando los principales conceptos de la perspectiva SD aplicados a la psicoterapia individual de adultos (entre 1997 y 2019), en los idiomas inglés y español, utilizando las bases de datos electrónicas PsycINFO y ProQuest. La selección final incluyó 34 estudios, tanto estudios de caso como estudios naturalistas, que abordaron diferentes variables de proceso y resultado de la psicoterapia. Los resultados resaltan la forma en que dichos conceptos ayudan a comprender el cambio de los pacientes como un proceso no lineal, destacando sus características de autoorganización, transiciones desde estados que generan sufrimiento psicológico a estados más saludables, y la formación de patrones emergentes en diferentes etapas de la psicoterapia. Se discuten algunos aspectos derivados (p.e. rol de la alianza, y de las intervenciones clínicas) que pueden ser abordados en el trabajo terapéutico.


Abstract: There is a diverse body of research that utilizes notions of the dynamical systems (DS) perspective to describe change processes in psychotherapy, understanding it as a non-linear self-organized system that presents emergent processes and structural variations. A systematic review of research in individual psychotherapy with adult patients addressed from this perspective has been carried out. The review was carried out supported by the PRISMA methodology tracking the main concepts of the DS perspective applied to individual psychotherapy of adults (between 1997 and 2019), in English and Spanish, using the electronic databases PsycINFO and ProQuest. The final selection included 34 studies, both case studies and naturalistic studies, covering different process and outcome variables of psychotherapy. The results highlight how such concepts help to understand patients' change as a nonlinear process, emphasizing its self-organizing characteristics, transitions from states that generate psychological distress to healthier states, and the formation of emergent patterns at different stages of psychotherapy. Some related aspects (e.g. role of the alliance, and of clinical interventions) that can be considered in the therapeutic work are discussed.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Aged, 80 and over , Psychotherapy/methods , Individuality , Physician-Patient Relations , Nonlinear Dynamics , Psychotherapeutic Processes
2.
Rev. colomb. cardiol ; 28(3): 231-238, mayo-jun. 2021. tab, graf
Article in Spanish | LILACS, COLNAL | ID: biblio-1341290

ABSTRACT

Resumen Introducción: Los sistemas dinámicos y la geometría fractal han sido el sustrato para el advenimiento de una ley matemática aplicada al diagnóstico de la dinámica cardíaca en 21 horas. Objetivo: Confirmar la aplicabilidad clínica de la ley matemática exponencial en 16 horas a partir de un estudio de concordancia diagnóstica frente a la norma de referencia. Materiales y método: Se realizó un estudio con 250 registros electrocardiográficos continuos y ambulatorios; 50 pertenecían a pacientes normales y 200 a pacientes con diversas enfermedades cardíacas. Se simuló la secuencia de frecuencias cardíacas y se construyeron los atractores correspondientes. Se calculó la dimensión fractal y la ocupación del atractor en el espacio generalizado de box-counting. Por último, se estableció el diagnóstico fisicomatemático en 16 y 21 horas y se efectuó la validación estadística. Resultados: Los espacios de ocupación para normalidad en la rejilla pequeña se encontraron entre 205 y 372, y entre 56 y 201 para dinámicas patológicas, lo cual permitió evidenciar la capacidad del método para diferenciar normalidad de enfermedad a través de la ocupación espacial de los atractores con base en la ley matemática en 16 horas. Se hallaron valores de sensibilidad y especificidad del 100% y un coeficiente kappa del orden de 1, luego de comparar el diagnóstico fisicomatemático frente a la norma de referencia. Conclusión: La ley matemática exponencial en 16 horas demostró su utilidad como herramienta de ayuda diagnóstica y predictiva, lo cual permitió diferenciar normalidad y estados evolutivos hacia enfermedad y agudización.


Abstract Introduction: Dynamic systems and fractal geometry have been the substrate for the rising of a mathematical law applied to the diagnosis of cardiac dynamics in 21 hours. Objective: To confirm the clinical applicability of the exponential mathematical law in 16 hours, with a study of diagnostic agreement against the Gold Standard. Materials and method: It was made a study with 250 ambulatory and continuous electrocardiographic recordings, 50 belonged to normal patients and 200 to patients with various cardiac pathologies. The sequence of heart rates was simulated, and attractors were constructed. It was calculated the fractal dimension of the attractor and its occupation in the generalized Box-Counting space. Finally, it was determined the physical-mathematical diagnostic in 16 and 21 hours, and statistical validation was performed. Results: The occupation spaces in the small grid were between 205 and 372 for normality, and between 56 and 201 for pathologic dynamics, which demonstrated the ability of the method to differentiate normal condition from sickness, through spatial occupation of attractors according to mathematical law in 16 hours. There were obtained values of sensitivity and specificity of 100% and Kappa coefficient was 1, after comparing the physic-mathematical analysis against the Gold Standard. Conclusion: The exponential mathematical law in 16 hours proved its utility as diagnostic and predictive tool support, allowing to differentiate normal, developmental stages to disease and exacerbation.


Subject(s)
Humans , Male , Female , Cardiovascular Diseases , Dynamic Filters , Electrocardiography, Ambulatory , Diagnosis
3.
Rev. cuba. invest. bioméd ; 36(4): 1-15, oct.-dic. 2017. ilus, tab
Article in Spanish | LILACS, CUMED | ID: biblio-1003914

ABSTRACT

Antecedentes: desde los sistemas dinámicos se desarrolló un diagnóstico de la dinámica cardiaca de aplicación clínica en 16 horas, de utilidad en pacientes de Unidad de Cuidados Intensivos. Objetivos: confirmar la capacidad diagnóstica de la nueva metodología de evaluación de la dinámica cardiaca en 16 horas y determinar la evolución de la presión arterial y venosa de oxígeno y dióxido de carbono. Metodología: se tomaron 50 dinámicas, 10 normales y 40 con patologías agudas, tomando la frecuencia cardiaca mínima y máxima, y número de latidos cada hora. Se construyeron atractores y se evaluaron los espacios de ocupación y la dimensión fractal en 21 y 16 horas, comparando ambos diagnósticos físico-matemáticos entre sí. Posteriormente se realizó una confirmación del diagnóstico establecido en 16 horas mediante un estudio ciego de comparación con el diagnóstico convencional. Adicionalmente se tomaron los valores de la presión arterial y venosa de oxígeno y dióxido de carbono de 7 pacientes de Unidad de Cuidados Intensivos y se construyeron atractores caóticos, evaluando los valores mínimos y máximos del atractor en el mapa de retardo. Resultados: se confirmó la capacidad diagnóstica de la metodología en 16 horas para la dinámica cardiaca, con sensibilidad y especificidad de 100 por ciento y coeficiente kappa de 1 respecto al diagnóstico convencional; los valores mínimos y máximos de los atractores de la presión arterial y venosa de oxígeno y dióxido de carbono se encontraron entre 29,60 y 194,40; 24,20 y 56,10; 16,40 y 65,60 y 21,40 y 97,90 respectivamente. Conclusiones: se confirmaron predicciones diagnósticas en 16 horas diferenciando normalidad, enfermedad crónica y enfermedad aguda, útiles para el seguimiento clínico en pacientes de Unidad de Cuidados Intensivos. Las variables se comportaron caóticamente; estos resultados podrían fundamentar aplicaciones clínicas y predicciones de mortalidad. Palabras claves: frecuencia cardiaca, presión arterial de oxígeno, presión arterial de dióxido de carbono, presión venosa de oxígeno, presión venosa de dióxido de carbono, Sistemas Dinámicos, caos, fractales, dinámica no lineal(AU)


Objectives: to confirm the diagnostic ability of the new assessment methodology of cardiac dynamics in 16 hours and determine the evolution of the arterial and venous pressure of oxygen and carbon dioxide. Methodology: 50 dynamic were taken, 10 normal and 40 with acute pathologies, taking the minimum and maximum heart rate, and number of beats per minute. Attractors were constructed and areas of occupation and the fractal dimension in 21 and 16 hours were evaluated, comparing both physical and mathematical diagnosis each other. Subsequently a confirmation of the diagnosis made in 16 hours by a blinded study compared to conventional diagnosis. Additionally, values of the arterial and venous pressure of oxygen and carbon dioxide from 7 Intensive Care Unit patients were taken and chaotic attractors were constructed to evaluate the minimum and maximum values of the attractor on the delay map. Results: The diagnostic capability of the methodology in 16 hours for cardiac dynamic was confirmed, with sensitivity and specificity of 100 percent and kappa coefficient 1 over conventional diagnosis; the minimum and maximum values of the arterial and venous pressure of oxygen and carbon dioxide were found between 29.60 and 194.40; 24.20 and 56.10; 16,40 and 65,60 and 21,40 and 97,90 respectively. Conclusions: Diagnostic predictions were confirmed in 16 hours differentiating normal, chronic and acute disease useful for clinical monitoring in Intensive Care Unit patients. The variables behaved chaotically; these results may inform clinical applications and predictions of mortality. Keywords: heart rate, arterial oxygen pressure, carbon dioxide arterial pressure, venous oxygen pressure, carbon dioxide venous pressure, dynamical systems, chaos, fractals, nonlinear dynamics(AU)


Subject(s)
Humans , Diagnostic Techniques and Procedures/standards , Heart Rate , Hemodynamics , Mathematics/methods , Hemodynamic Monitoring/methods , Intensive Care Units/ethics
4.
Med. intensiva ; 34(1): [1-8], 2017. tab, fig
Article in Spanish | LILACS | ID: biblio-883662

ABSTRACT

Introducción: En cardiología, la aplicación de teorías, como la de los sistemas dinámicos y la geometría fractal, han generado nuevos diagnósticos matemáticos que diferencian, de manera geométrica y cuantitativa, el comportamiento normal del enfermo a partir de la ocupación del atractor caótico cardíaco. El objetivo de este estudio fue desarrollar, en el contexto de la teoría de los sistemas dinámicos, una metodología de evaluación de la saturación arterial de oxígeno para pacientes en la Unidad de Cuidados Intensivos. Materiales y Métodos: Se seleccionaron 10 pacientes con diferentes enfermedades, provenientes de la Unidad de Cuidados Intensivos, a los cuales se les registró la saturación arterial de oxígeno durante su estancia en la Unidad, y se construyeron atractores caóticos en el mapa de retardo. Posteriormente, se establecieron cuantificaciones de los valores mínimos y máximos del atractor. Resultados: Los valores máximos y mínimos de los atractores de la saturación de oxígeno variaron entre el 100% y el 70%, para los pacientes que fallecieron, mientras que para aquellos que vivieron, se mantuvo entre el 99% y el 85%. Conclusiones: Se observó un comportamiento caótico asociado a la saturación arterial de oxígeno, cuantificable a partir de los valores máximos y mínimos hallados de la totalidad del atractor, estableciendo una nueva medida matemática y física del paciente crítico en la Unidad de Cuidados Intensivo (AU)


Introduction: In cardiology, the application of theories, such as dynamical systems and fractal geometry, has generated new mathematical diagnoses that differentiate geometrically and quantitatively the normal from the diseased behavior through the occupation of the cardiac chaotic attractor. The objective of this study was to develop, in the context of the dynamical systems theory, a methodology for the evaluation of arterial oxygen saturation in patients of the Intensive Care Unit. Materials and Methods: Ten patients with different pathologies from the Intensive Care Unit were selected. The arterial oxygen saturation was recorded during their stay in the Intensive Care Unit and chaotic attractors were built in the delay map. Subsequently, quantifications of the minimum and maximum values of the attractor were established. Results: The maximum and minimum values of the oxygen saturation attractors varied between 100% and 70% for patients who died, whereas for those who lived, saturation values between 99% and 85% were maintained. Conclusions: A chaotic behavior associated with arterial oxygen saturation, quantifiable through the maximum and minimum values found in the entire attractor, was observed, establishing a new mathematical and physical measurement of the critical patient in the Intensive Care Unit.(AU)


Subject(s)
Humans , Oxygen , Fractals , Intensive Care Units
5.
Rev. costarric. cardiol ; 18(1/2): 5-11, ene.-dic. 2016. tab, ilus
Article in Spanish | LILACS | ID: biblio-960254

ABSTRACT

ResumenIntroducción:La dinámica cardíaca ha sido caracterizada a partir de la teoría de los sistemas dinámicos y la geometría fractal, permitiendo generar metodologías de aplicación clínica.Objetivo:desde los sistemas dinámicos, se desarrollará una metodología de evaluación de los pH y presiones de dióxido de carbono arteriales y venosos para pacientes de la Unidad de Cuidados Intensivos.Materiales y Métodos:se escogieron 10 pacientes con diversas patologías de la Unidad de Cuidados Intensivos Postqui rúrgicos del Hospital Militar Central, registrando pH y presiones de dióxido de carbono arteriales y venosas durante su tiempo de estancia; posteriormente se construyeron atractores, determinando su tipo de trayectoria y estableciendo los valores máximos y mínimos de estas variables en el mapa de retardo.Resultados:se encontró un comportamiento caótico de las variables evaluadas, hallando valores mínimos y máximos de 7,01 y 7,59 para pH arterial, 6,97 y 7,53 para pH venoso, 14,40 y 73,70 para presión arterial de dióxido de carbono, y 19,20 y 97,90 para presión venosa de dióxido de carbono.Conclusiones:La evaluación de los valores máximos y mínimos del atractor en el mapa de retardo constituye un nuevo método, objetivo y reproducible, para la evaluación matemática de cada una de las variables estudiadas, de utilidad para el seguimiento de pacientes en UCI.


SummaryIntroduction:Cardiac dynamics has been characterized from the theory of dynamical systems and fractal geometry, allowing to generate methodologies with clinical application. Objective: from dynamic systems, a methodology for evaluating the arterial and venous pH and dioxide of carbon pressures for patient in Intensive Care Unit will be developed.Materials and Methods:10 patients with various pathologies were selected from Post-surgical Intensive Care Unit of the Central Military Hospital, recording arterial and venous pH and dioxide of carbon pressures of during its stay; attractors were built subsequently, determining the type of path and setting the maximum and minimum values of these variables on the delay map.Results:chaotic behavior of the variables evaluated was found, finding maximum and minimum values of 7,01 and 7,59 for arterial pH values, 6,97 and 7,53 for venous pH, 14,40 and 73,70 for arterial dioxide of carbon pressure, and 19,20 and 97,90 for venous dioxide of carbon pressure.Conclusions:The evaluation of the maximum and minimum values of the attractor on the delay map is a new method, objective and reproducible for the mathematical evaluation of each of the variables studied, useful for monitoring patients in Intensive Care Unit.


Subject(s)
Humans , Venous Pressure , Blood Gas Analysis , Carbon Dioxide , Hypocapnia , Critical Care , Arterial Pressure , Hypercapnia , Intensive Care Units
6.
Ciênc. cogn ; 20(1): 18-28, mar. 2015.
Article in Spanish | LILACS, INDEXPSI | ID: biblio-1017160

ABSTRACT

En el ensayo se explora el alcance y los fundamentos subyacentes a un enfoquedinamicista en las neurociencias cognitivas. Se hace hincapié especialmente en dos puntos: (1) una reconstrucción histórica de una tradición neurocientífica centrada en una conceptualización dinámica del cerebro y (2) la ponderación de la medida en que las líneas de investigación dentro de la misma representan un estilo característico de trabajo, diferenciado en este sentido de otros abordajes de las dinámicas neuronales. Para esto, se atiende especialmente a los aspectos epistemológicos que abonarían la consolidación y continuidad de un abordaje específico en el campo contemporáneo de la investigación neurocientífica


Neste ensaio, explora-se o alcance e os fundamentos subjacentes a uma abordagem dinamista em neurociência cognitiva, com especial ênfase em dois pontos: (1) a reconstrução histórica da tradição neurocientífica centrada em uma conceituação dinâmica do cérebro e (2) uma ponderação da medida em que as linhas de pesquisa dentro da mesma representam um estilo distinto de trabalho, diferenciado a este respeito de outras abordagens para a dinâmica neural. Para esta finalidade, atende-se, especialmente,aos aspectos epistemológicos que contribuem para a consolidação e continuidade de uma abordagem específica no campo da pesquisa nas neurociências contemporâneas


This essay explores the extent and foundati ons underlying a dynamical approach in the cogniti ve neurosciences. Two issues are especially stressed: (1) an historical reconstructi on of a neuroscienti fi c traditi on centered on a dynamical conceptualizati on of the brain and (2) an evaluati on of the degree to which the associated research programs represent a characteristi c working style, disti nct in this sense from other approaches to neural dynamics. To this end, I focus especially on the epistemological aspects that could foster the consolidati on and conti nuity of a specifi c approach in the contemporary fi eld of neuroscientific research.


Subject(s)
Neurosciences , Cognition , History
7.
Rev. MED ; 21(1): 38-45, ene.-jun. 2013. ilus, tab
Article in Spanish | LILACS | ID: lil-700586

ABSTRACT

Las ecuaciones diferenciales se clasifican de acuerdo con el tipo, el orden y si son o no lineales; pueden expresar leyes de los fenómenos naturales como las leyes del movimiento de Newton, enunciadas en el contexto de la cinemática para el sistema dinámico planetario. La teoría de los sistemas dinámicos ha sido base, junto con otras teorías físicas y matemáticas, para el desarrollo de metodologías predictivas en medicina. En un trabajo previo se hizo una predicción para la dinámica de la epidemia de la malaria en Colombia, a partir de una analogía en el contexto de las ecuaciones diferenciales de segundo orden, encontrando una predicción correcta para los rangos de casos de infectados en los años 2005 a 2007, cuyas trayectorias representadas corresponden a atractores circulares concéntricos. En el presente trabajo se desarrolló esta misma metodología para la predicción de la dinámica de la epidemia del dengue, tomando los datos de casos desde 1990 hasta 2007. Se calculó la velocidad inicial y la aceleración inicial para rangos de tres años, haciendo predicciones de la trayectoria a partir de la ecuación diferencial de segundo orden para la aceleración. Se predijeron correctamente los rangos de valores de las trayectorias de la epidemia de dengue para el 2005, 2006 y 2007 a través de atractores circulares concéntricos, concluyendo que dentro del contexto de la ley diferencial acausal se pueden predecir los rangos de la trayectoria de la dinámica, de forma útil para las decisiones de salud pública.


Differential equations are classified according to type, order and whether they are linear or not; they can express natural phenomena laws such as Newton's movement laws, set in the context of kinematics for the planetary dynamic system. Dynamical systems theory has been a foundation along with other physical and mathematical theories, for the development of predictive methodologies in medicine. In a previous study, a prediction for the dynamics of Malaria Epidemic in Colombia was made, beginning with an analogy in the context of second order differential equations, finding a successful prediction for the infected ranges for the years 2005-2007, which represented trajectories correspond to concentric circular attractors. In the present study, the same methodology for Dengue Epidemic prediction was developed; considering the cases data from 1990 to 2007, initial velocity and initial acceleration for three year-ranges, making predictions of the epidemic from the second order differential equation for acceleration. Values of ranges were successfully predicted for Dengue Epidemic trajectories for 2005, 2006 and 2007, through concentric circular attractors; it was concluded that within the context of acausal differential equation the dynamic trajectory ranges may be predicted in a useful way for the Public Health decision making.


As equações diferençais classificam-se de acordo com o tipo, a ordem e se são ou não lineares; podem expressar leis dos fenômenos naturais como as leis do movimento de Newton, enunciadas no contexto da cinemática para o sistema dinâmico planetário. A teoria dos sistemas dinâmicos tem sido base, junto com outras teorias físicas e matemáticas, para o desenvolvimento de metodologias preditivas em medicina. Em um trabalho prévio se fez uma predição para a dinâmica da epidemia da Malaria na Colômbia, a partir de uma analogia no contexto das equações diferençais de segunda ordem, encontrando uma predição correta para os intervalos de casos de infectados nos anos 2005 a 2007, cujas trajetórias representadas correspondem a atratores circulares concêntricos. No presente trabalho se desenvolveu esta mesma metodologia para a predição da dinâmica da epidemia da dengue, tomando os dados de casos desde 1990 até 2007, calculou-se a velocidade inicial e a aceleração inicial para intervalos de três anos, fazendo predições da trajetória a partir da equação diferencial de segundo ordem para a aceleração. Predisseram-se corretamente os intervalos de valores das trajetórias da epidemia de dengue para 2005, 2006 e 2007 através de atratores circulares concêntricos, concluindo que dentro do contexto da lei diferencial acausal podem-se predizer os intervalos da trajetória da dinâmica, de forma útil para as decisões de saúde pública.


Subject(s)
Humans , Epidemics , Public Health , Colombia , Dengue
8.
Interdisciplinaria ; 28(2): 279-298, dic. 2011. ilus
Article in English | LILACS | ID: lil-639640

ABSTRACT

We analyze, from a theoretical viewpoint, the bidirectional interdisciplinary relation between Mathematics and Psychology, focused on the mathematical theory of deterministic dynamical systems, and in particular, on the theory of chaos. On one hand, there is the direct classic relation: the application of Mathematics to Psychology. On the other hand, we propose the converse relation which consists in the formulation of new abstract mathematical problems appearing from processes and structures under research of Psychology. The bidirectional multidisciplinary relation from - to pure Mathematics, largely holds with the ‘hard' sciences, typically Physics and Astronomy. But it is rather new, from the social and human sciences, towards pure Mathematics. Summarizing, the problem we focusing in this paper, is not only the application of the mathematical theory of dynamical systems to Psychology, but mainly the following questions: Which psychological processes are involved in the development of pure Mathematics? How can a multidisciplinary space be organized to activate the converse relation, from Psychology towards pure Mathematics? How may Psychology provide a rich field of new mathematical questions to be investigated, not only by applied mathematicians, but also by researchers on pure Mathematics? Even if large advances had been achieved, the application of the mathematical theory to Psychology is still mainly developed by mathematical psychologists and applied mathematicians, in the absence of pure mathematicians. Conversely, the development of the pure Mathematics is now a days mainly developed in the absence of applied scientists, particularly of human and social researchers. This is the opposite situation to the antique posture, in which theoretical Mathematics and Philosophy, for instance, were almost a single science. Along this paper we aim to found how the potential strength of the mathematical tools can be more fully exploited in the interdisciplinary space, and how the necessary development of new abstract and adequate tools in pure Mathematics, may be detected while immersed into an interdisciplinary discussion. This discussion does not need to be ‘applied', in its restricted sense. In fact, Mathematics may still remain abstract and theoretical, bust just break its apparent isolation from other sciences, in particular to those related with the human thinking, like Philosophy and Psychology. The methodology of our analysis along this paper follows three steps: First, we present a partial review, focused in several aspects of the mathematical research, in their interdisciplinary relation with Psychology. Then, we state and analyze epistemologically, the mathematical abstract definitions of dynamical systems, and in particular of deterministic chaos. Finally, we suggest a general meta-theory in the organization of the interdisciplinary space between Mathematics and Psychology, which we illustrate with an hypothetical example. This paper is organized in six sections: At the first one, we briefly introduce the discourse. At the second section, we present a partial survey of the knowledge in the interdisciplinary fields among Mathematics, Psychology and other sciences. That survey is focused on the theory of dynamical systems, and is very partial respect to the whole abundant development in this interdisciplinary field. The third section states the mathematical definitions of dynamical and autonomous system, and of deterministic chaos, and analyze them epistemologically. Among other properties, we revisit the argument of self-organization of deterministic chaos. At the fourt hand fifth sections, we propose a method and a metatheory, according to which, the interdisciplinary space between Mathematics and Psychology may organize its purposes and actions. We consider the epistemological objection of Nowak and Vallacher (1998). They observe that the traditional notions of causality holds in social psychological research, and oppose to (some of) the mathematical models of dynamical systems, which feedback the same variable from one time to the next. In fifth section too, arguing on a particular hypothetically example, we propose a method to model mathematically such systems with causal transitions, provided that the system is deterministic. The modeling method that we propose in this metatheory, solves the epistmological objection of Nowak and Vallacher, in some particular cases. Finally, the last section states the conclusions.


Se analiza, desde el punto de vista teórico, la relación interdisciplinaria bidireccional, entre-Matemática y Psicología, desde el punto de vista abstracto de la teoría de los sistemas dinámicos determinístícos, y en particular de la teoría del caos. Por un lado, está la relación clásica directa: la aplicación de la Matemática a la Psicología. Por otro lado, se propone y analiza la relación inversa que consiste en la formulación de nuevos problemas matemáticos, resueltos o no resueltos aún, que aparecen de procesos y estructuras bajo investigación de la Psicología. Tradicionalmente, la relación interdisciplinaria bidireccional desde - hacia la Matemática pura teórica, tiene una larga y fructífera trayectoria con otras ciencias duras, típicamente la Física y la Astronomía, pero es relativamente nueva, encarada desde las ciencias humanas y sociales, hacia la Matemática abstracta. El procedimiento de análisis es el siguiente: se presenta una revisión parcial, enfocada en algunos aspectos de la investigación matemática en relación con la Psicología. Luego se enuncian las definiciones matemáticas abstractas de sistemas dinámicos, y en parciular del caos determinista. Finalmente, se sugiere una meta-teoría general, en la organización del espacio interdisciplinario entre Matemática y Psicología, ilustrándolo con un ejemplo hipotético.

9.
Salud ment ; 29(3): 1-10, may.-jun. 2006.
Article in Spanish | LILACS | ID: biblio-985950

ABSTRACT

resumen está disponible en el texto completo


Abstract: The present paper offers a particular emergence, dual aspect, and dynamic system theory of the neural correlate of consciousness. The theory is grounded on two successive hypotheses supported with empirical evidences and concepts from the neurosciences, approximations to the sciences of complexity, and philosophical arguments. The first hypothesis is that consciousness emerges along with the highest level of brain function, i.e., at the intermodular domain of the whole organ. This hypothesis is upheld by two necessary requisites; the first is the generalized impression in neuroscience of the brain as an information-handling device, and that this property enables every mental activity, including consciousness, to take place. This concept is verified on several empirical grounds. If we take the synapse as a binary code of information, the computation capacity of the brain is in the order of 100 million Megabits. Even such enormous figure is limited and misleading because the synapse manifests not only two, but three possible informational states (excitation, rest, and inhibition), because there are subliminal potentials, and also a compact intracellular information machinery. Moreover, the informational requirement of consciousness is accurately delivered by Kuffler and Nichols' five ruling principles of brain function: (1) The brain uses electrical signals to process information; (2) Such electrical signals are identical in all neurons; (3) The signals constitute codes of codification and representation; (4) The origin and destiny of the fibers determines the content of information; (5) The meaning of the signals lies in the interactions. Even though the reference to representation, content, and meaning implies higher cognitive properties, it seems necessary to add a sixth principle for a more judicious neural implication in regard to consciousness. This principle is that information is processed in the brain in six levels of complexity, undergoing a gradual gain in density, integration, congruity, and capacity in each consecutive stratum. The six levels are the following: (1) Organismic, the integration of the nervous system with the rest of the organism systems; (2) Organic, the integration of the different modules in the whole brain; (3) Modular, the set of brain modules and their interconnections; (4) Intercellular, the designs and functional bindings among neuron cells; (5) Cellular, the set of brain cells, particularly neurons; (6) Molecular, the chemical components that mediate the transmission of information. In this fashion, the second requisite to uphold the emergence of consciousness lies in establishing that the different levels of brain organization constitute a pyramidal arrangement. Certainly, the number of elements is greater in the lower levels, while the integration of information is progressively enhanced in the upper levels. Moreover, this neuropsychological pyramid insinuates both an ascending cascade whereby the lower orders stipulate and influence the upper ones, and a progressive and convergent functional enrichment ultimately resulting in the qualia, feeling, and awareness attributes of consciousness. Information flows horizontally in each level, but it also overflows vertically in both directions. This pyramidal scheme is applied to clarify two parti cular aspects of brain function that are closely linked to consciousness: the electrical activity and the engram of memory. Such inquiry makes clear that a qualitative jump manifested by the emergence of various and dissimilar novelties occur at each layer of brain operation based upon a mass coordination. It seems feasible to envision the engram, and conceivably every other mental representation, as a plastic pattern involving all levels and aspects of brain operation, including the pinnacle where consciousness consolidates as the subjective aspect of the uppermost brain function. As a result of the proposed stratified and pyramidal scheme of brain functions, the first hypotheses is strengthened and specified. Thus, presumably consciousness and the neural capacities correlated to it constitute two associated aspects emerging from such particular functional hierarchy at the organic level of the brain by the efficient connection of its modules. It would not be required that all the modules of the brain become interrelated during a conscious processing, but that they would be functionally available while some of them become progressively active by intermodular articulation thereby making possible the arising and unfolding of conscious mental operation streams. In order to reinforce this notion the visual system is invoked since the scene that is consciously perceived emerges from the coordination of some 40 modules that separately appear to operate unconsciously. At the moment that such high-hierarchy and complex function presumably appears, it would achieve a conscious correlate and become altogether able to exert a descending causality and supervene the operation of the lower orders, which, among other capacities, would permit voluntary action to take place. In order to specify the first hypothesis asserting that consciousness emerges at the organic level of the brain along with the proficient inter-modular connectivity, a second hypothesis is formulated and justified in neuroanatomical, neurophysiological, and complexity science terms. The supposition is that the specific neural correlate of consciousness may be a function similar to a bird flock or an insect swarm orderly binding the operations of different modules in a cinematic, hipercomplex, coherent, and synchronic stream. The human brain contains some 400 cortical and subcortical modules functioning as partially specialized stations that potentially interchange particularly codified information through some 2500 fibers or intermodular pathways. The hypothesis requires that information complexity undergoes a further and substantial gain of attributions through the concise and prolific connectivity of the different modules. In this regard, it is supposed that a stream of coherent activation is constituted in the conscious brain by the intermodular dynamics and that such dynamics may acquire global patterned properties in a simi lar way as bird flocks and so-called intelligent swarms achieve unanimously shifting dynamics. This particular idea is supported with complexity science models of the remarkable performances of large groups of birds and insects and with the known behavior of massive populations of neurons. In so far as this would be a complex function operating at the limits of equilibrium resulting from local dynamics of the brain subsystems, the self-organization of high level brain functions justifies the notion that a dynamic coupling among modules can and may result in complex cognitive properties and consciousness. Intermodular brain dynamics is conceived here as an emergent, unbound, synchronic, hypercomplex, highly coherent, and tetradimensional process capable to navigate, steer, swirl, split, and flow throughout the brain and thereby connect very diverse systems in a fast and efficient manner. In the same way, its putative subjective correlate, the conscious process, can be conceived as an emergent, voluntary, unified, qualitative, and narrative process capable to access, coordinate, and integrate multiple local information mechanisms. The hypothesis poses that the conscious transformation of information is correlated, moment to moment and point to point, with the intermodular processing that evolves in the manner of a bird flock or swarm dynamics. It is finally posed that brain intermodular dynamics correlated to consciousness consolidates by the convergence of an ascending bottom-up organization of the different ranks of brain operation, and by the descending top-down influx of the social, cultural, and environmental information where the individual is immersed.

10.
Salud ment ; 29(2): 7-12, mar.-abr. 2006.
Article in Spanish | LILACS | ID: biblio-985940

ABSTRACT

resumen está disponible en el texto completo


Abstract: The present paper offers a particular emergence, dual aspect, and dynamic system theory of the neural correlate of consciousness. The theory is grounded on two successive hypotheses supported by empirical evidences and concepts from the neurosciences, approximations to the sciences of complexity, and philosophical arguments. The first hypothesis is that consciousness emerges along with the highest level of brain function, i.e., at the intermodular domain of the whole organ. This hypothesis is upheld by two necessary requisites. The first is the generalized impression in neurosciences of the brain as an information-handling device, and that this property enables every mental activity, including consciousness. This concept is verified on several empirical grounds. If we take the synapse as a binary code of information, the computation capacity of the brain is in the order of the 100 million megabits. Even such an enormous figure is limited and misleading because the synapse manifests not only two, but three possible informational states (excitation, rest, and inhibition), because there are subliminal potentials, and also a compact intracellular information machinery. Moreover, the informational requirement of consciousness is accurately delivered by Kuffler and Nichols' five ruling principles of brain function: 1. The brain uses electrical signals to process information; 2. such electrical signals are identical in all neurons; 3. the signals constitute codes of codification and representation; 4. the origin and destiny of the fibers determines the content of information; 5. the meaning of the signals lies in the interactions. Even though the reference to representation, content, and meaning implies higher cognitive properties, it seems necessary to add a sixth principle for a more judicious neural implication in regard to consciousness. This principle is that information is processed in the brain in six levels of complexity, undergoing a gradual gain in density, integration, congruity, and capacity in each consecutive stratum. The six levels are the following: 1. organismic, the integration of the nervous system with the rest of the organism systems; 2. organic, the integration of the different modules in the whole brain; 3. modu lar, the set of brain modules and their interconnections; 4. intercellular, the designs and functional bindings among neuron cells; 5. cellular, the set of brain cells, particularly neurons; 6. molecular, the chemical components that mediate the transmission of information. In this fashion, the second requisite to uphold the emergence of consciousness lies in establishing that the different levels of brain organization constitute a pyramidal arrangement. Certainly, the number of elements is greater in the lower levels, while the integration of information is progressively enhanced in the upper levels. Moreover, this neuropychological pyramid insinuates both an ascending cascade whereby the lower orders stipulate and influence the upper ones, and a progressive and convergent functional enrichment ultimately resulting in the qualia, feeling, and awareness attributes of consciousness. Information flows horizontally in each level, but it also overflows vertically in both directions. This pyramidal scheme is applied to clarify two parti cular aspects of brain function that are closely linked to consciousness: the electrical activity and the engram of memory. Such inquiry makes clear that a qualitative jump manifested by the emergence of various and dissimilar novelties occur at each layer of brain operation based upon a mass coordination. It seems feasible to envision the engram, and conceivably every other mental representation, as a plastic pattern involving all levels and aspects of brain operation, including the pinnacle where consciousness consolidates as the subjective aspect of the uppermost brain function. As a result of the proposed stratified and pyramidal scheme of brain functions, the first hypotheses is strengthened and specified. Thus, presumably consciousness and the neural capacities correlated to it constitute two associated aspects emerging from such particular functional hierarchy at the organic level of the brain by the efficient connection of its modules. It would not be required that all the modules of the brain became interrelated during a conscious processing, but that they would be functionally available instead, while some of them become progressively active by intermodular articulation, thereby making possible the arising and unfolding of conscious mental operation streams. In order to reinforce this notion, the visual system is invoked since the consciously perceived scene emerges from the coordination of some 40 modules that separately appear to operate unconsciously. At the moment that such high-hierarchy and complex function presumably appears, it would achieve a conscious correlate and become altogether able to exert a descending causality and supervene the operation of the lower orders, which, among other capacities, would permit voluntary action to take place. In order to specify the first hypothesis, asserting that consciousness emerges at the organic level of the brain along with the proficient intermodular connectivity, a second hypothesis is formulated and justified in neuroanatomical, neurophysiological, and complex scientific terms. The supposition is that the specific neural correlate of consciousness may be a function similar to a bird flock or an insect swarm orderly binding the operations of different modules in a cinematic, hipercomplex, coherent, and synchronic stream. The human brain contains some 400 cortical and subcortical modules functioning as partially specialized stations that potentially interchange particularly codified information through some 2500 fibers or intermodular pathways. The hypothesis requires information complexity undergoing a further and substantial gain of attributions through the concise and prolific connectivity of the different modules. In this regard, it is supposed that a stream of coherent activation is constituted in the conscious brain by the intermodular dynamics and that such dynamics may acquire global patterned properties in a simi lar way as bird flocks and so-called intelligent swarms achieve unanimously shifting dynamics. This particular idea is supported with complex scientific models of the remarkable performances of large groups of birds and insects and with the known behavior of massive populations of neurons. In so far as this would be a complex function operating at the limits of equilibrium resulting from local dynamics of the brain subsystems, the self-organization of high level brain functions justifies the notion that a dynamic coupling among modules may result in complex cognitive properties and consciousness. Intermodular brain dynamics is conceived here as an emergent, unbound, synchronic, hypercomplex, highly coherent, and tetradimensional process capable to navigate, steer, swirl, split, and flow throughout the brain and thereby connect very diverse systems in a fast and efficient manner. In the same way, its putative subjective correlate -the conscious process- may be conceived as an emergent, voluntary, unified, qualitative, and narrative process capable to access, coordinate, and integrate multiple local information mechanisms. The hypothesis poses that the conscious transformation of information is correlated, moment to moment and point to point, with the intermodular processing that evolves in the manner of a bird flock or swarm dynamics. It is finally posed that brain intermodular dynamics correlated to consciousness consolidates by the convergence of an ascending bottom-up organization of the different ranks of brain operation, and by the descending top-down influx of the social, cultural, and environmental information where the individual is immersed.

SELECTION OF CITATIONS
SEARCH DETAIL